【题目】已知椭圆C:()的焦距等于短轴的长,椭圆的右顶点到左焦点的距离为.
(1)求椭圆C的标准方程;
(2)已知直线l:()与椭圆C交于A、B两点,在y轴上是否存在点,使得,且,若存在,求实数t的取值范围;若不存在,请说明理由.
【答案】(1)(2)存在,
【解析】
(1)由题意可得的关系,解方程组求得,即可得椭圆的标准方程.
(2)设,,联立直线与椭圆方程,用韦达定理表示出,,利用弦长公式表示出.化简后用表示出,再通过判别式判断出的取值范围. 设出中点的坐标,由点斜式表示出直线的方程,并令求得的表达式及取值范围即可.
(1)依题意椭圆的焦距等于短轴的长,椭圆的右顶点到左焦点的距离为
可得,
解得,
所以所求椭圆方程为;
(2)设,,
由,
得,
,
∵,,
假设存在点满足题意,
,
化简整理得,
此时
恒成立,
所以且,
设中点,
则,,
由,则在线段AB的中垂线上.
因为,
直线的方程为,
令,则,
∴,
∵,
∴,
∴,
∴,
∴或,
综上,存在满足题意.
科目:高中数学 来源: 题型:
【题目】某幼儿园举办“yue”主题系列活动——“悦”动越健康亲子运动打卡活动,为了解小朋友坚持打卡的情况,对该幼儿园所有小朋友进行了调查,调查结果如下表:
打卡天数 | 17 | 18 | 19 | 20 | 21 |
男生人数 | 3 | 5 | 3 | 7 | 2 |
女生人数 | 3 | 5 | 5 | 7 | 3 |
(1)根据上表数据,求该幼儿园男生平均打卡的天数;
(2)若从打卡21天的小朋友中任选2人交流心得,求选到男生和女生各1人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,设直线,其中,给出下列结论:
①直线的方向向量与向量共线;
②若,则直线与直线的夹角为;
③直线与直线()一定平行;
写出所有真命题的序号________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)分别求出直线与曲线的极坐标方程:
(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线:的左、右焦点分别是、,左、右两顶点分别是、,弦AB和CD所在直线分别平行于x轴与y轴,线段BA的延长线与线段CD相交于点如图).
⑴若是的一条渐近线的一个方向向量,试求的两渐近线的夹角;
⑵若,,,,试求双曲线的方程;
⑶在⑴的条件下,且,点C与双曲线的顶点不重合,直线和直线与直线l:分别相交于点M和N,试问:以线段MN为直径的圆是否恒经过定点?若是,请求出定点的坐标;若不是,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂预购软件服务,有如下两种方案:
方案一:软件服务公司每日收取工厂60元,对于提供的软件服务每次10元;
方案二:软件服务公司每日收取工厂200元,若每日软件服务不超过15次,不另外收费,若超过15次,超过部分的软件服务每次收费标准为20元.
(1)设日收费为元,每天软件服务的次数为,试写出两种方案中与的函数关系式;
(2)该工厂对过去100天的软件服务的次数进行了统计,得到如图所示的条形图,依据该统计数据,把频率视为概率,从节约成本的角度考虑,从两个方案中选择一个,哪个方案更合适?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.
(Ⅰ)求证:EG∥平面ADF;
(Ⅱ)求二面角OEFC的正弦值;
(Ⅲ)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com