精英家教网 > 高中数学 > 题目详情
已知圆C经过点A(-2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.
(I)求圆C的方程;
(II)若
OP
OQ
=-2
,求实数k的值;
(III)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.
分析:(I)设圆心C(a,a),半径为r,利用|AC|=|BC|=r,建立方程,从而可求圆C的方程;
(II)方法一:利用向量的数量积公式,求得∠POQ=120°,计算圆心到直线l:kx-y+1=0的距离,即可求得实数k的值;
方法二:设P(x1,y1),Q(x2,y2),直线方程代入圆的方程,利用韦达定理及
OP
OQ
=x1•x2+y1•y2=,即可求得k的值;
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,求得d12+d2=1,根据垂径定理和勾股定理得到,|PQ|=2•
4-d2
,|MN|=2•
4-d12
,再利用基本不等式,可求四边形PMQN面积的最大值;
方法二:当直线l的斜率k=0时,则l1的斜率不存在,可求面积S;当直线l的斜率k≠0时,设l1:y=-
1
k
x+1
,则
y=kx+1
x2+y2=4
,代入消元得(1+k2)x2+2kx-3=0,求得|PQ|,|MN|,再利用基本不等式,可求四边形PMQN面积的最大值.
解答:解:(I)设圆心C(a,a),半径为r.
因为圆经过点A(-2,0),B(0,2),所以|AC|=|BC|=r,
所以
(a+2)2+a2
=
a2+(a-2)2
=r

解得a=0,r=2,…(2分)
所以圆C的方程是x2+y2=4.…(4分)
(II)方法一:因为
OP
OQ
=2×2×cos<
OP
OQ
>=-2
,…(6分)
所以cos∠POQ=-
1
2
,∠POQ=120°,…(7分)
所以圆心到直线l:kx-y+1=0的距离d=1,…(8分)
d=
1
k2+1
,所以k=0.…(9分)
方法二:设P(x1,y1),Q(x2,y2),
因为
y=kx+1
x2+y2=4
,代入消元得(1+k2)x2+2kx-3=0.…(6分)
由题意得:
△=4k2-4(1+k2)(-3)>0
x1+x2=
-2k
1+k2
x1x2=
-3
1+k2
…(7分)
因为
OP
OQ
=x1•x2+y1•y2=-2,
y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1
所以x1•x2+y1•y2=
-3
1+k2
+
-3k2
1+k2
+
-2k2
1+k2
+1=-2
,…(8分)
化简得:-5k2-3+3(k2+1)=0,
所以k2=0,即k=0.…(9分)
(III)方法一:设圆心O到直线l,l1的距离分别为d,d1,四边形PMQN的面积为S.
因为直线l,l1都经过点(0,1),且l⊥l1,根据勾股定理,有d12+d2=1,…(10分)
又根据垂径定理和勾股定理得到,|PQ|=2•
4-d2
,|MN|=2•
4-d12
,…(11分)
S=
1
2
•|PQ|•|MN|
,即
S=
1
2
×2×
4-d12
×2×
4-d2
=2
16-4(d12+d2)+d12d2
=2
12+d12d2
≤2
12+(
d12+d2
2
)
2
=2
12+
1
4
=7,
…(13分)
当且仅当d1=d时,等号成立,所以S的最大值为7.…(14分)
方法二:设四边形PMQN的面积为S.
当直线l的斜率k=0时,则l1的斜率不存在,此时S=
1
2
•2
3
•4=4
3
.…(10分)
当直线l的斜率k≠0时,设l1:y=-
1
k
x+1

y=kx+1
x2+y2=4
,代入消元得(1+k2)x2+2kx-3=0
所以
△=4k2-4(1+k2)(-3)>0
x1+x2=
-2k
1+k2
x1x2=
-3
1+k2
|PQ|=
1+k2
|x1-x2|=
1+k2
4k2+12k2+12
1+k2
=
1+k2
16k2+12
1+k2

同理得到|MN|=
1+
1
k2
16
1
k2
+12
1+
1
k2
=
1+k2
12k2+16
1+k2
.…(11分)
S=
1
2
•|PQ|•|MN|
=
1
2
(1+k2)
(16k2+12)(12k2+16)
(1+k2)2
=
1
2
16(4k2+3)(3k2+4)
1+k2
=
2
12k4+25k2+12
1+k2
=2
12(k4+2k2+1)+k2
k4+2k2+1

=2
12+
k2
k4+2k2+1
=2
12+
1
k2+2+
1
k2
…(12分)
因为k2+2+
1
k2
≥2+2
k2
1
k2
=4

所以 S≤2
12+
1
4
=2×
7
2
=7
,…(13分)
当且仅当k=±1时,等号成立,所以S的最大值为7.…(14分)
点评:本题考查圆的标准方程,考查向量的数量积,考查圆的性质,考查四边形面积的计算,考查基本不等式的运用,解题的关键是正确表示四边形的面积,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C经过点A(1,3)、B(2,2),并且直线l:3x-2y=0平分圆C,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,2)、B(3,0),并且直线m:2x-3y=0平分圆C.
(1)求圆C的方程;
(2)过点D(0,3),且斜率为k的直线l与圆C有两个不同的交点E、F,若|EF|≥2
3
,求k的取值范围;
(3)若圆C关于点(
3
2
,1)
对称的曲线为圆Q,设M(x1,y1)、P(x2,y2)(x1≠±x2)是圆Q上的两个动点,点M关于原点的对称点为M1,点M关于x轴的对称点为M2,如果直线PM1、PM2与y轴分别交于(0,m)和(0,n),问m•n是否为定值?若是求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(1,-1),B(-2,0),C(
5
,1)直线l:mx-y+1-m=0
(1)求圆C的方程;
(2)求证:?m∈R,直线l与圆C总有两个不同的交点;
(3)若直线l与圆C交于M、N两点,当|MN|=
17
时,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(0,3)和B(3,2),且圆心C在直线y=x上.
(Ⅰ) 求圆C的方程;
(Ⅱ)若直线y=2x+m被圆C所截得的弦长为4,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C经过点A(5,1),B(1,3)两点,圆心在x轴上,则C的方程是(  )

查看答案和解析>>

同步练习册答案