精英家教网 > 高中数学 > 题目详情

【题目】绵阳是党中央、国务院批准建设的中国唯一的科技城,重要的国防科研和电子工业生产基地,市某科研单位在研发过程中发现了一种新合金材料,由大数据测得该产品的性能指标值值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系为:当时,的二次函数;当时,测得部分数据如表:

(单位:克)

1)求关于的函数关系式

2)求该新合金材料的含量为何值时产品的性能达到最佳.

【答案】1;(2.

【解析】

1)设,将表格中的数据代入函数的解析式,求出未知数的值,可得出函数的解析式;

2)分别求出函数在区间上的最大值,比较大小后可得出结论.

1)当时,的二次函数,可设

,解得

时,,得.

综上所述,

2)当时,

此时,当时,函数取得最大值

时,函数递减,可得.

综上可知,当时产品的性能达到最佳.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①线性相关系数r的绝对值越大,两个变量的线性相关性越弱;反之,线性相关性越强;

②将一组数据中的每个数据都加上或减去同一个常数后,平均值不变

③将一组数据中的每个数据都加上或减去同一个常数后,方差不变

④在回归方程4x+4中,变量x每增加一个单位时,平均增加4个单位.

其中错误命题的序号是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小;

②百分率是频率,但不是概率;

③频率是不能脱离试验次数的实验值,而概率是具有确定性的不依赖于试验次数的理论值;

④频率是概率的近似值,概率是频率的稳定值.

其中正确的是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

讨论的单调性;

,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图象向右平移个单位后得到函数的图象,则( )

A. 图象关于直线对称 B. 图象关于点中心对称

C. 在区间单调递增 D. 在区间上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,.

1)判断数列是否为等比数列?并说明理由;

2)若对任意正整数恒成立,求首项的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为F1、F2,点O为坐标原点,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B. 则 |OA|+2|OB|=_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】类比三角形中的性质:(1)两边之和大于第三边;(2)中位线长等于底边的一半;(3)三内角平分线交于一点; 可得四面体的对应性质:(1)任意三个面的面积之和大于第四个面的面积;(2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第四个面面积的;(3)四面体的六个二面角的平分面交于一点。其中类比推理结论正确的有 ( )

A. (1) B. (1)(2) C. (1)(2)(3) D. 都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ex1+alnx.(e为自然对数的底数),λmin{a+25}.(min{ab}表示ab中较小的数.)

1)当a0时,设gx)=fx)﹣x,求函数gx)在[]上的最值;

2)当x1时,证明:fx+x2λx1+2

查看答案和解析>>

同步练习册答案