精英家教网 > 高中数学 > 题目详情

【题目】已知复数z满足|z|= ,z2的虚部为2.
(1)求z;
(2)设z,z2 , z﹣z2在复平面对应的点分别为A,B,C,求△ABC的面积.

【答案】
(1)解:设Z=x+yi(x,y∈R)

由题意得Z2=(x﹣y)2=x2﹣y2+2xyi

故(x﹣y)2=0,∴x=y将其代入(2)得2x2=2∴x=±1

故Z=1+i或Z=﹣1﹣i;


(2)解:当Z=1+i时,Z2=2i,Z﹣Z2=1﹣i

所以A(1,1),B(0,2),C(1,﹣1)

当Z=﹣1﹣i时,Z2=2i,Z﹣Z2=﹣1﹣3i,A(﹣1,﹣1),B(0,2),C(﹣1,﹣3)

SABC= ×1×2=1.


【解析】(1)设出复数的代数形式的式子,根据所给的模长和z2的虚部为2.得到关于复数实部和虚部的方程组,解方程组,得到要求的复数.(2)写出所给的三个复数的表示式,根据代数形式的表示式写出复数对应的点的坐标,即得到三角形的三个顶点的坐标,求出三角形的面积,注意三个点的坐标有两种结果,不要漏解.
【考点精析】认真审题,首先需要了解复数的定义(形如的数叫做复数,分别叫它的实部和虚部),还要掌握复数的模(绝对值)(复平面内复数所对应的点到原点的距离,是非负数,因而两复数的模可以比较大小;复数模的性质:(1)(2)(3)若为虚数,则)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,A,B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.现记从中任取三条线且在单位时间内都通过的最大信息总量为ξ,则P(ξ≥8)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b均大于0,且 + =1.求证:对于每个n∈N* , 都有(a+b)n﹣(an+bn)≥22n﹣2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中ABCD为正方形,EF分别为PAPD的中点,

在此几何体中,给出下面四个结论:

直线BE与直线CF异面; 直线BE与直线AF异面;

直线EF平面PBC平面BCE平面PAD.

其中正确的有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

(Ⅰ)求函数的解析式;

(Ⅱ)将函数的图象做怎样的平移变换可以得到函数的图象;

Ⅲ)若方程上有两个不相等的实数根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求的单调区间;

(2)当时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:

(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某普通高中为了了解学生的视力状况,随机抽查了100名高二年级学生和100名高三年级学生,对这些学生配戴眼镜的度数(简称:近视度数)进行统计,得到高二学生的频数分布表和高三学生频率分布直方图如下:

近视度数

0﹣100

100﹣200

200﹣300

300﹣400

400以上

学生频数

30

40

20

10

0


将近视程度由低到高分为4个等级:当近视度数在0﹣100时,称为不近视,记作0;当近视度数在100﹣200时,称为轻度近视,记作1;当近视度数在200﹣400时,称为中度近视,记作2;当近视度数在400以上时,称为高度近视,记作3.
(1)从该校任选1名高二学生,估计该生近视程度未达到中度及以上的概率;
(2)设a=0.0024,从该校任选1名高三学生,估计该生近视程度达到中度或中度以上的概率;
(3)把频率近似地看成概率,用随机变量X,Y分别表示高二、高三年级学生的近视程度,若EX=EY,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的极坐标方程为,曲线的参数方程为,( 为参数).

(1)将两曲线化成普通坐标方程;

(2)求两曲线的公共弦长及公共弦所在的直线方程.

查看答案和解析>>

同步练习册答案