精英家教网 > 高中数学 > 题目详情
4.给出下列四个命题:①f(x)=sin(2x-$\frac{π}{4}$)的对称轴为x=$\frac{kπ}{2}+\frac{3π}{8}$,k∈Z;②若函数y=2cos(ax-$\frac{π}{3}$)(a>0)的最小正周期是π,则a=2;③函数f(x)=sinxcosx-1的最小值为-$\frac{3}{2}$;④函数y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2},\frac{π}{2}$]上是增函数,其中正确命题的个数是(  )
A.1个B.2个C.3个D.4个

分析 求出函数的对称轴方程判断①;由周期公式求出a值判断②;利用倍角公式化简,进一步求出函数的最小值判断③;由函数的单调性判断④.

解答 解:①由$2x-\frac{π}{4}=kπ+\frac{π}{2}$,得x=$\frac{kπ}{2}+\frac{3π}{8}$,k∈Z,
∴f(x)=sin(2x-$\frac{π}{4}$)的对称轴为x=$\frac{kπ}{2}+\frac{3π}{8}$,k∈Z,①正确;
②若函数y=2cos(ax-$\frac{π}{3}$)(a>0)的最小正周期是π,则$\frac{2π}{a}=π$,即a=2,②正确;
③函数f(x)=sinxcosx-1=$\frac{1}{2}sin2x-1$,最小值为-$\frac{3}{2}$,③正确;
④当x∈[-$\frac{π}{2},\frac{π}{2}$]时,x$+\frac{π}{4}∈$[-$\frac{π}{4},\frac{3π}{4}$],∴函数y=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2},\frac{π}{2}$]上不是单调函数,④错误.
∴正确命题的个数是3个.
故选:C.

点评 本题考查命题的真假判断与应用,考查了三角函数的图象和性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则图中阴影部分表示的集合为(  )
A.{1,2,5,6}B.{1}C.{2}D.{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=a-x2(1≤x≤2)与g(x)=x+1的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.$[-\frac{5}{4},+∞)$B.[1,2]C.$[-\frac{5}{4},1]$D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.袋中有10个外形相同的球,其中5个白球,3个黑球,2个红球,从中任意取出一球,已知它不是白球,则它是黑球的概率是(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知抛物线T:y2=2px(p>0)的焦点为F,A(x0,y0)为T上异于原点的任意一点,点D为x的正半轴上的点,且有|FA|=|FD|,若x0=3时,D的横坐标为5.
(1)求T的方程;
(2)直线AF交T于另一点B,直线AD交T于另一点C,试求△ABC的面积S关于x0的函数关系式S=f(x0),并求其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为(  )
A.x2-$\frac{{y}^{2}}{3}$=1B.$\frac{{x}^{2}}{3}-{y}^{2}=1$C.y2-$\frac{{x}^{2}}{3}$=1D.$\frac{{x}^{2}}{2}-\frac{{y}^{2}}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组函数中,表示同一函数的是(  )
A.$y=x+1与y=\frac{{{x^2}+x}}{x}$B.$f(x)=\frac{x^2}{{{{({\sqrt{x}})}^2}}}与g(x)=x$
C.$f(x)=x\frac{|x|}{x}与f(t)=\left\{\begin{array}{l}t(t>0)\\-t(t<0)\end{array}\right.$D.$f(x)=|x|与g(x)=\left\{\begin{array}{l}x(x>0)\\-x(x<0)\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(2x-1)=4x2(x>0),则f(x)=x2+2x+1(x>-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解不等式组:$\left\{\begin{array}{l}\frac{x+2}{x}≥2\\|2x-1|≤1\end{array}\right.$.

查看答案和解析>>

同步练习册答案