精英家教网 > 高中数学 > 题目详情

已知点,动点满足
(1)求动点的轨迹的方程;
(2)在直线上取一点,过点作轨迹的两条切线,切点分别为.问:是否存在点,使得直线//?若存在,求出点的坐标;若不存在,请说明理由.

(1);(2)

解析试题分析:(1)设动点,利用条件列式化简可得动点轨迹方程C;(2),再求出切点弦的方程,利用其斜率为2,看方程是否有解即可.
试题解析:(1)设,则
,得,化简得.
故动点的轨迹的方程.                          5分
(2)直线方程为,设 ,
过点的切线方程设为,代入,得
,得,所以过点的切线方程为,  7分
同理过点的切线方程为.所以直线MN的方程为,   9分
//,所以,得,而
故点的坐标为.                           10分
考点:曲线与方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆,直线交椭圆两点.
(Ⅰ)求椭圆的焦点坐标及长轴长;
(Ⅱ)求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知椭圆的两个焦点分别为,且到直线的距离等于椭圆的短轴长.

(Ⅰ) 求椭圆的方程;
(Ⅱ) 若圆的圆心为(),且经过,是椭圆上的动点且在圆外,过作圆的切线,切点为,当的最大值为时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线的极坐标方程为,曲线的极坐标方程为,曲线相交于两点.(
(Ⅰ)求两点的极坐标;
(Ⅱ)曲线与直线为参数)分别相交于两点,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆过定点,圆心在抛物线上,为圆轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左、右焦点分别为,且,长轴的一个端点与短轴两个端点组成等边三角形的三个顶点.
(1)求椭圆方程;
(2)设椭圆与直线相交于不同的两点M、N,又点,当时,求实数m的取值范围,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点,直线AG,BG相交于点G,且它们的斜率之积是
(Ⅰ)求点G的轨迹的方程;
(Ⅱ)圆上有一个动点P,且P在x轴的上方,点,直线PA交(Ⅰ)中的轨迹于D,连接PB,CD.设直线PB,CD的斜率存在且分别为,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且
. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知离心率的椭圆一个焦点为.
(1)求椭圆的方程;
(2) 若斜率为1的直线交椭圆两点,且,求直线方程.

查看答案和解析>>

同步练习册答案