精英家教网 > 高中数学 > 题目详情

【题目】某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为 ,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

【答案】
(1)解:由题意可知,所求概率
(2)解:设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.

则X的分布列为:

X

1

2

3

P

设乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.

则Y的分布列为:

Y

0

1

2

3

P

.(或∵ ,∴ .(

由E(X)=D(Y),D(X)<D(Y)可得,甲公司竞标成功的可能性更大


【解析】(1)利用独立重复试验的概率公式求解甲、乙两家公司共答对2道题目的概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.求出概率,得到X的分布列求解期望;乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.求出概率得到分布列,求出期望即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且离心率

(1)求椭圆的标准方程

(2)是否存在过点的直线交椭圆与不同的两点,且满足 (其中为坐标原点)。若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线C:y2=4x的焦点为F,准线为l,P为抛物线C上一点,且P在第一象限,PM⊥l于点M,线段MF与抛物线C交于点N,若PF的斜率为 ,则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)对定义域内的任意x1 , x2 , 当f(x1)=f(x2)时,总有x1=x2 , 则称函数f(x)为单纯函数,例如函数f(x)=x是单纯函数,但函数f(x)=x2不是单纯函数.若函数 为单纯函数,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=alog2(|x|+4)+x2+a2﹣8有唯一的零点,则实数a的值是(
A.﹣4
B.2
C.±2
D.﹣4或2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若a>b>1,0<c<1,则(
A.ac<bc
B.abc<bac
C.alogbc<blogac
D.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)= +ln( +x)+ cos xdx在区间[﹣k,k](k>0)上的值域为[m,n],则m+n的值是( )
A.0
B.2
C.4
D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=3,an+1=2an﹣n+1,数列{bn}满足b1=2,bn+1=bn+an﹣n.
(1)证明:{an﹣n}为等比数列;
(2)数列{cn}满足 ,求数列{cn}的前n项和Tn , 求证:Tn

查看答案和解析>>

同步练习册答案