精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

【答案】12)是定值,0

【解析】

1)根据题意可知,解方程组即可求出,即可求解.

2)设直线的方程为,代入椭圆,设点,可得点,利用韦达定理以及两点求斜率化简即可求解.

1)由题意知

又离心率,所以

于是有

解得

所以椭圆的方程为

2)由于直线的斜率为.可设直线的方程为

代入椭圆,可得

由于直线交椭圆两点,

所以

整理解得

设点,由于点与点关于原点对称,

故点,于是有

设直线的斜率分别为,由于点

于是有

故直线的斜率之和为0,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数. 

(Ⅰ)若,证明:函数上的减函数;

(Ⅱ)若曲线在点处的切线与直线平行,求的值;

(Ⅲ)若,证明: (其中…是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)时,求函数的极值;

(2)时,讨论函数的单调性;

(3)若对任意的,恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点 ,且离心率为.设为椭圆的左、右顶点,P为椭圆上异于的一点直线分别与直线相交于两点,且直线与椭圆交于另一点.

(Ⅰ)求椭圆的标准方程;

(Ⅱ)求证:直线的斜率之积为定值

(Ⅲ)判断三点是否共线,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,当x>0时,.

1)求f(x)的解析式;

2)设x[1,2]时,函数,是否存在实数m使得g(x)的最小值为6,若存在,求m的取值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,五面体中,四边形是菱形, 是边长为2的正三角形,

(1)证明:

(2)若在平面内的正投影为,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为考察某动物疫苗预防某种疾病的效果,现对200只动物进行调研,并得到如下数据:

未发病

发病

合计

未注射疫苗

20

60

80

注射疫苗

80

40

120

合计

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

则下列说法正确的:(

A.至少有99.9%的把握认为“发病与没接种疫苗有关”

B.至多有99%的把握认为“发病与没接种疫苗有关”

C.至多有99.9%的把握认为“发病与没接种疫苗有关”

D.“发病与没接种疫苗有关”的错误率至少有0.01%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列直线的斜率、一个法向量和一个方向向量

1;(2

3;(4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新高考方案的实施,学生对物理学科的选择成了焦点话题. 某学校为了了解该校学生的物理成绩,从,两个班分别随机调查了40名学生,根据学生的某次物理成绩,得到班学生物理成绩的频率分布直方图和班学生物理成绩的频数分布条形图.

(Ⅰ)估计班学生物理成绩的众数、中位数(精确到)、平均数(各组区间内的数据以该组区间的中点值为代表);

(Ⅱ)填写列联表,并判断是否有的把握认为物理成绩与班级有关?

物理成绩的学生数

物理成绩的学生数

合计

合计

附:列联表随机变量

查看答案和解析>>

同步练习册答案