精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

【答案】③④

【解析】作出折叠后的几何体直观图如图所示:

AB=a,BE=a,AE=a.

.

BCDE∴∠ABC是异面直线ABDE所成的角,

RtABC, ,故①不正确;

连结BDCE,则CEBD

AD⊥平面BCDECE平面BCDE

CEAD,又BDAD=DBD平面ABDAD平面ABD

CE⊥平面ABD,又AB平面ABD

CEAB.故②错误。

三棱锥BACE的体积.

故③正确。

AD⊥平面BCDEBC平面BCDE

BCAD,又BCCD

BC⊥平面ACDBC平面ABC

∴平面ABC⊥平面ACD.

故答案为③④

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 ,则函数 的零点个数是( )
A.4
B.5
C.6
D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经市场调查,某商品在过去的100天内的销售量(单位:)和价格(单位:)均为时间 (单位:)的函数,且销售量满足=,价格满足=.

(1)求该种商品的日销售额与时间的函数关系;

(2)若销售额超过16610,商家认为该商品的收益达到理想程度,请判断该商品在哪几天的收益达到理想程度?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC﹣A1B1C1中,∠ABC=90°,E、F分别为A1C1、B1C1的中点,D为棱CC1上任一点.
(Ⅰ)求证:直线EF∥平面ABD;
(Ⅱ)求证:平面ABD⊥平面BCC1B1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若函数上是减函数,求实数的取值范围;

(2)是否存在整数,使得的解集恰好是,若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数, 为常数.

(1)确定的值;

(2)求证: 上的增函数;

(3)若对于区间上的每一个值,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣mx对任意的x1 , x2∈[0,2],都有|f(x2)﹣f(x1)|≤9,求实数m的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥中,底面是正方形,侧棱底面 的中点,过点作于点.

(1)证明: 平面

(2)证明: 平面

(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x.若在区间[﹣2,3]上方程ax+2a﹣f(x)=0恰有四个不相等的实数根,则实数a的取值范围是(
A.(
B.(
C.( ,2)
D.(1,2)

查看答案和解析>>

同步练习册答案