精英家教网 > 高中数学 > 题目详情

【题目】一个几何体的三视图如图所示(单位:m),求该几何体的体积和表面积.(V圆锥体= Sh,V圆柱体=Sh)

【答案】解:根据几何体的三视图,得; 该几何体是底面直径为2,高为4的圆柱,与底面直径为4,高为2的圆锥的组合体;
其中圆锥的母线为 =2
∴该几何体的体积为,
V=V+V=π124+ π222= π;
表面积为:S=S底面圆+S圆柱侧+S圆锥侧=π22+2π14+π22 =(12+4 )π
【解析】根据三视图得出该几何体是圆柱与圆锥的组合体;求出它的体积与表面积即可.
【考点精析】解答此题的关键在于理解由三视图求面积、体积的相关知识,掌握求体积的关键是求出底面积和高;求全面积的关键是求出各个侧面的面积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线与直线垂直(其中为自然对数的底数)。

(Ⅰ)若在区间上存在极值,求实数的取值范围;

(Ⅱ)求证:当时,不等式

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3. (Ⅰ)求函数f(x)在[t,t+1](t>0)上的最小值;
(Ⅱ)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(Ⅲ)证明:对一切x∈(0,+∞),都有lnx> 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产产品x件的总成本C(x)=1000+x2(万元),已知产品单价P(万元)与产品件数x满足:P2= ,生产100件这样的产品单价为50万元.
(1)设产量为x件时,总利润为L(x)(万元),求L(x)的解析式;
(2)产量x定为多少时总利润L(x)(万元)最大?并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)当时,分别求函数的最小值和的最大值,并证明当时, 成立;

(3)令,当时,判断函数有几个不同的零点并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左焦点和上顶点在直线上, 为椭圆上位于轴上方的一点且轴, 为椭圆上不同于的两点,且

(1)求椭圆的标准方程;

(2)设直线轴交于点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,

①求曲线在点处的切线方程;

②求函数在区间上的值域.

(2)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为三个锐角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)与向量 =(cosA﹣sinA,1+sinA)是共线向量. (Ⅰ)求角A;
(Ⅱ)求函数y=2sin2B+cos 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.

(1)证明:BE∥平面ADP;
(2)求直线BE与平面PDB所成角的正弦值.

查看答案和解析>>

同步练习册答案