精英家教网 > 高中数学 > 题目详情
12.将函数y=$\sqrt{3}$sin2x的图象向右平移$\frac{π}{4}$个单位长度,再将所得图象的所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),得到的图象所对应的函数解析式为(  )
A.y=$\sqrt{3}$sinxB.y=-$\sqrt{3}$cosxC.y=$\sqrt{3}$sin4xD.y=-$\sqrt{3}$cos4x

分析 由三角函数图象变换规律和三角函数化简可得.

解答 解:将函数y=$\sqrt{3}$sin2x的图象向右平移$\frac{π}{4}$个单位长度得到y=$\sqrt{3}$sin2(x-$\frac{π}{4}$)=$\sqrt{3}$sin(2x-$\frac{π}{2}$)=-$\sqrt{3}$cos2x图象,
再将所得图象的所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变)得到y=-$\sqrt{3}$cos2•2x=-$\sqrt{3}$cos4x的图象.
故选:D.

点评 本题考查三角函数图象变换,涉及三角函数的化简,函数基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若AB=1,AC=4,A=120°,则△ABC的面积等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知角α的终边经过P($\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα;
(2)根据上述条件,你能否确定sin($\frac{π}{4}$+α)的值?若能,求出sin($\frac{π}{4}$+α)的值,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知关于x的方程($\frac{1}{2}$)x=$\frac{1}{1-a}$有一个正根,则实数a的取值范围是a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a<0”是“函数f(x)=|x(ax+1)|在区间(-∞,0)内单调递减”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知三角形ABC的顶点坐标分别为:A(-1,5),B(5,5),C(6,-2),求其外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,圆柱OO1的底面圆半径为2,ABCD为经过圆柱轴OO1的截面,点P在$\widehat{{A}{B}}$上且$\widehat{{A}{P}}=\frac{1}{3}\widehat{{A}{P}{B}}$,Q为PD上任意一点.
(Ⅰ)求证:AQ⊥PB;
(Ⅱ)若线段PD的长为$2\sqrt{3}$,求圆柱OO1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列命题:
①双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与椭圆$\frac{x^2}{35}+{y^2}=1$有相同的焦点;
②“$-\frac{1}{2}<x<0$”是“2x2-5x-3<0”的必要不充分条件;
③对于函数f(x)=x3-3x2,f(0)=0是极大值,f(2)=-4是极小值;
④?x∈R,x2-3x+3≠0.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设$f(x)=\left\{\begin{array}{l}cosπx(x<\frac{1}{2})\\ 2f(x-1)(x>\frac{1}{2})\end{array}\right.$,则$f(\frac{1}{3})+f(\frac{13}{6})$=$\frac{1}{2}+2\sqrt{3}$.

查看答案和解析>>

同步练习册答案