【题目】已知椭圆,点、、均在椭圆上,,点与点关于原点对称,的最大值为.
(1)求椭圆的标准方程;
(2)若,求外接圆的半径的值.
科目:高中数学 来源: 题型:
【题目】2019新型冠状病译(2019-nCoV)于2020年1月12日被世界卫生组织命名.冠状病毒是一个大型病毒家族,可引起感冒以及中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等较严重疾病.某医院对病患及家属是否带口罩进行了调查,统计人数得到如下列联表:
戴口罩 | 未戴口罩 | 总计 | |
未感染 | 30 | 10 | 40 |
感染 | 4 | 6 | 10 |
总计 | 34 | 16 | 50 |
(1)根据上表,判断是否有95%的把握认为未感染与戴口罩有关;
(2)在上述感染者中,用分层抽样的方法抽取5人,再在这5人中随机抽取2人,求这2人都未戴口罩的概率.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB的中点,AB=2,AD=,∠BAD=90°.
(Ⅰ)求证:AD⊥BC;
(Ⅱ)求异面直线BC与MD所成角的余弦值;
(Ⅲ)求直线CD与平面ABD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线上一点,点为抛物线的焦点,.
(1)求直线的方程;
(2)若直线过点,与抛物线相交于两点,且曲线在点与点处的切线分别为,直线相交于点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是圆上任意一点,过点作轴于点,延长到点,使.
(1)求点M的轨迹E的方程;
(2)过点作圆O的切线l,交(1)中曲线E于两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,河的两岸分别有生活小区和,其中,三点共线,与的延长线交于点,测得,,,,,若以所在直线分别为轴建立平面直角坐标系则河岸可看成是曲线(其中是常数)的一部分,河岸可看成是直线(其中为常数)的一部分.
(1)求的值.
(2)现准备建一座桥,其中分别在上,且,的横坐标为.写出桥的长关于的函数关系式,并标明定义域;当为何值时,取到最小值?最小值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com