精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-a|+
1
x
,当a=2时,解不等式:f(x)<0.
考点:绝对值不等式的解法
专题:不等式的解法及应用
分析:不懂呢过是即|x-2|<-
1
x
,即
x<0
1
x
<x-2<-
1
x
,即
x<0
x2<2x+1
x2>2x-1
,由此求得x的范围.
解答: 解:当a=2时,不等式即|x-2|+
1
x
<0,即|x-2|<-
1
x
,∴
x<0
1
x
<x-2<-
1
x

x<0
x>2+
1
x
x<2-
1
x
,即
x<0
x2<2x+1
x2>2x-1
,求得1-
2
<x<0.
点评:本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在长方体ABCD-A1B1C1D1中,已知AB=2AD=3AA1,求异面直线AC和BC1所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足:z(1+i)=1-i,则复数z等于(  )
A、-1B、-iC、iD、1

查看答案和解析>>

科目:高中数学 来源: 题型:

求⊙M1:(x-3)2+(y-3)2=4与⊙M2:(x-2)2+(y-2)2=1的公切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

解不等式:(x-1)2+5>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an=
4an-1
2an-1+1
(n≥2).
(1)求数列{an}的通项公式;
(2)证明不等式:a1+a2+a3+…+an
3n-16
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过原点的一条直线l被l1:2x+y-6=0与l2:4x+2y-5=0所截得的线段长为
7
2
,求此直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{bn}的前n项和为Sn,bn=
n+1
(n+2)24n2
,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=2x内一点P(a,1)作弦AB,若P为AB中点,则直线AB的方程是
 

查看答案和解析>>

同步练习册答案