精英家教网 > 高中数学 > 题目详情

已知函数在点处的切线方程为

(I)求的值;

(II)若对函数定义域内的任一个实数,都有恒成立,求实数的取值范围.

 

【答案】

(Ⅰ);(Ⅱ)的取值范围是

【解析】

试题分析:(Ⅰ)由

而点在直线,又直线的斜率为

故有

(Ⅱ)由(Ⅰ)得

,故在区间上是减函数,故当时,,当时,

从而当时,,当时,

是增函数,在是减函数,故

要使成立,只需

的取值范围是

考点:本题主要考查导数的几何意义,应用导数研究函数的单调性及极(最)值。

点评:典型题,本题属于导数应用中的基本问题,对恒成立问题,往往转化成求函数的最值,这种思路是一般解法,通过“分离参数法”,达到解题目的。

 

练习册系列答案
相关习题

科目:高中数学 来源:2014届辽宁省五校协作体届高三摸底考试理科数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程是x+ y-l=0,其中e为自然对数的底数,函数g(x)=1nx- cx+ 1+ c(c>0),对一切x∈(0,+)均有恒成立.

(Ⅰ)求a,b,c的值;

(Ⅱ)求证:.

 

查看答案和解析>>

科目:高中数学 来源:2014届云南省高二下学期期末考试文科数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程为

(1)求函数的解析式;

(2)若经过点可以作出曲线的三条切线,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三第一次(3月)周测理科数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程为,且对任意的恒成立.

(Ⅰ)求函数的解析式;

(Ⅱ)求实数的最小值;

(Ⅲ)求证:).

 

查看答案和解析>>

科目:高中数学 来源:2014届江西省南昌市高二2月份月考文科数学试卷(解析版) 题型:解答题

(本小题13分)已知函数在点处的切线与直线垂直.

(1)若对于区间上任意两个自变量的值都有,求实数的最小值;

(2)若过点可作曲线的三条切线,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏南四校高三12月月考试数学试卷(解析版) 题型:解答题

已知函数在点处的切线方程为

(1)求函数的解析式;

(2)若对于区间[-2,2]上任意两个自变量的值都有求实数c的最小值.

 

查看答案和解析>>

同步练习册答案