精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a1=2,n(an+1﹣an)=an+1,n∈N*

(1)设bn ,求数列{bn}的通项公式;

(2)若对于任意的t∈[0,1],n∈N*,不等式2t2﹣(a+1)t+a2﹣a+3恒成立,求实数a的取值范围.

【答案】(1);(2)

【解析】

(1)由题得,再利用累加法求数列{bn}的通项公式.(2)由题得3≤﹣2t2﹣(a+1)t+a2﹣a+3,即得2t2+(a+1)t﹣a2+a≤0在t∈[0,1]上恒成立,接着

设f(t)=2t2+(a+1)t﹣a2+a,t∈[0,1],得不等式组,解之得解.

(1)根据题意,数列{an}中,n(an+1﹣an)=an+1,

∴nan+1﹣(n+1)an=1,

,(n≥2)

)+()+…+(a2﹣a1)+a1

=()+()+…+(1)+2=3

bn 3.

(2)∵2t2﹣(a+1)t+a2﹣a+3恒成立,且33,

∴3≤﹣2t2﹣(a+1)t+a2﹣a+3

∴2t2+(a+1)t﹣a2+a≤0,在t∈[0,1]上恒成立,

设f(t)=2t2+(a+1)t﹣a2+a,t∈[0,1],

,即

解得a≤﹣1或a≥3.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】元旦晚会期间,高三二班的学生准备了6 个参赛节目,其中有 2 个舞蹈节目,2 个小品节目,2个歌曲节目,要求歌曲节目一定排在首尾,另外2个舞蹈节目一定要排在一起,则这 6 个节目的不同编排种数为

A. 48 B. 36 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点.

(Ⅰ)求椭圆的方程;

(Ⅱ)设分别是椭圆的下顶点和上顶点, 是椭圆上异于的任意一点,过点轴于为线段的中点,直线与直线交于点为线段的中点, 为坐标原点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面四边形ABCD中,CD=1,BC=2,∠C=120°

(1)求cos∠CBD的值;

(2)若AD=4,cos∠ABC,求∠A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单中了解到我校3000名学生的体重发育评价情况如下表:

偏瘦

正常

偏胖

女生/

300

865

y

男生/

x

855

z

已知从这批学生中随机抽取1名学生,抽到偏瘦男生的概率为0.15.

1)求x的值.

2)若用分层抽样的方法,从这批学生中随机抽取60名,应在偏胖学生中抽多少名?

3)已知,求偏胖学生中男生不少于女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人参加普法知识竞赛,共有5题,选择题3个,判断题2个,甲、乙两人各抽一题.

1)甲、乙两人中有一个抽到选择题,另一个抽到判断题的概率是多少?

2)甲、乙两人中至少有一人抽到选择题的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,则的取值范围是(  )

A. B. C. D.

【答案】C

【解析】

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,则x2﹣ax+3a>0且f(2)0,根据二次函数的单调性,我们可得到关于a的不等式,解不等式即可得到a的取值范围.

若函数f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函数,

则当x∈[2,+∞)时,

x2﹣ax+3a>0且函数f(x)=x2﹣ax+3a为增函数

,f(2)=4+a>0

解得﹣4<a≤4

故选:C.

【点睛】

本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调区间,其中根据复合函数的单调性,构造关于a的不等式,是解答本题的关键.

型】单选题
束】
10

【题目】圆锥的高和底面半径之比,且圆锥的体积,则圆锥的表面积为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平行四边形OABC中,过点C的直线与线段OA、OB分别相交于点M、N,若;(1)求y关于x的函数解析式;(2)定义函数,点列Pi(xi,F(xi))(i=1,2,…,n,n2)在函数y=F(x)的图象上,且数列{xn}是以1为首项,0.5为公比的等比数列,O为原点,令,是否存在点Q(1,m),使得?若存在,求出Q点的坐标,若不存在,说明理由;

查看答案和解析>>

同步练习册答案