精英家教网 > 高中数学 > 题目详情
设函数f(x)在R上满足f(1+x)=f(1-x),f(x+2)=-f(2-x).
(1)求f(2)的值.
(2)判断f(x)的奇偶性,并说明理由.
(3)若f(1)=
1
2
,试求出f(2014)的值.
考点:抽象函数及其应用,函数奇偶性的判断,函数的值
专题:函数的性质及应用
分析:(1)求f(2)的值.
(2)判断f(x)的奇偶性,并说明理由.
(3)若f(1)=
1
2
,试求出f(2014)的值.
解答: 解:(1)令x=0,则由f(2+x)=-f(2-x),
得f(2)=-f(2),解得f(2)=0.
(2)f(-x)=f[1-(1+x)]=f[1+(1+x)]=f(2+x)=-f(2-x)=-f[1+(1-x)]=-f[1-(1-x)]=-f(x).
故函数f(x)是奇函数.
(3)f(4+x)=f[2+(2+x)]=-f[2-(2+x)]=-f(-x)=f(x)
 故f(x)是周期为4的周期函数,
则f(2014)=f(503×4+2)=f(2)=0
点评:本题主要考查抽象函数的应用,利用赋值法结合函数奇偶性和周期性的定义判断函数的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P(0,2)已知直线l:y=kx+b与圆C:x2+y2=4相交与A,B两点,当|PA|•|PB|=4时,试证明点P到直线l的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果对定义在R上的函数f(x),对任意两个不相等的实数x1,x2,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1),则称函数f(x)为“H函数”.给出下列函数:
①f(x)=x2②f(x)=ex③f(x)=sinx④f(x)=
ex,x>0
x+1,x≤0
.以上函数是“H函数”的所有序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,D是AC上一点,E是BC上一点,若AB=
1
2
BD,CE=
1
2
EB,∠BDE=120°,CD=3,则BC=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意两个正整数x,y,定义某种新运算?,当x,y都为正偶数或者为正奇数时:x?y=x+y;当x,y中有一个为正奇数,另一个为正偶数时:x?y=xy.则在上述定义下,集合M={(m,n)|m?n=36,m,n∈N* }中元素的个数是(  )
A、6B、35C、36D、41

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,Sn是{an}的前n项和,且
Sn
=
Sn-1
+1(n≥2)
(1)求数列{an}的通项公式;
(2)若bn=an+2n-1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=
3a+2x
x+a
的图象关于A(1,2)对称,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg
1-x
1+x
的定义域为集合A,a,b∈A
(1)判断函数f(x)的奇偶性
(2)求证:f(a)+f(b)=f(
a+b
1+ab

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某线性规划问题的约束条件是
y≤x
3y≥x
x+y≤4
,则下列目标函数中,在点(3,1)处取得最小值的是(  )
A、z=2x-y
B、z=-2x+y
C、z=-
1
2
x-y
D、z=2x+y

查看答案和解析>>

同步练习册答案