精英家教网 > 高中数学 > 题目详情

【题目】[选修4-4:坐标系与参数方程]

在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.

1)当时,求l的极坐标方程;

2)当MC上运动且P在线段OM上时,求P点轨迹的极坐标方程.

【答案】1l的极坐标方程为;(2

【解析】

1)先由题意,将代入即可求出;根据题意求出直线的直角坐标方程,再化为极坐标方程即可;

2)先由题意得到P点轨迹的直角坐标方程,再化为极坐标方程即可,要注意变量的取值范围.

1)因为点在曲线上,

所以

,所以

因为直线l过点且与垂直,

所以直线的直角坐标方程为,即

因此,其极坐标方程为,即l的极坐标方程为

2)设,则

由题意,,所以,故,整理得

因为P在线段OM上,MC上运动,所以

所以,P点轨迹的极坐标方程为,即.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,.

(Ⅰ)若点的中点,求证:平面

(Ⅱ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究“教学方式”对教学质量的影响,某高中老师分别用两种不同的教学方式对入学数学平均分数和优秀率都相同的甲、乙两个高一新班进行教学(勤奋程度和自觉性都一样).以下茎叶图为甲、乙两班(每班均为20人)学生的数学期末考试成绩.

(1)现从甲班数学成绩不低于80分的同学中随机抽取两名同学,求成绩为87分的同学至少有一名被抽中的概率;

(2)学校规定:成绩不低于75分的为优秀.请填写下面的2×2列联表,并判断有多大把握认为“成绩优秀与教学方式有关”.

甲班

乙班

合计

优秀

不优秀

合计

参考公式:,其中

参考数据:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)函数处的切线与直线垂直,求实数的值;

2)若函数在定义域上有两个极值点,且.

①求实数的取值范围;

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:

专业A

专业B

合计

女生

12

男生

46

84

合计

50

100

如果认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过( )

注:

Px2k

0.10

0.05

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

A. 0.005B. 0.01C. 0.025D. 0.05

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花卉经销商销售某种鲜花,售价为每支5元,成本为每支2元.销售宗旨是当天进货当天销售.当天未售出的当垃圾处理.根据以往的销售情况,按 进行分组,得到如图所示的频率分布直方图.

(1)根据频率分布直方图计算该种鲜花日需求量的平均数,同一组中的数据用该组区间中点值代表;

(2)该经销商某天购进了400支这种鲜花,假设当天的需求量为x枝,,利润为y元,求关于的函数关系式,并结合频率分布直方图估计利润不小于800元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)已知函数,求函数时的值域;

(2)函数有两个不同的极值点

①求实数的取值范围;

②证明:.

(本题中可以参与的不等式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】件产品,其中件是次品,其余都是合格品,现不放回的从中依次抽.求:(1)第一次抽到次品的概率;

2)第一次和第二次都抽到次品的概率;

3)在第一次抽到次品的条件下,第二次抽到次品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数,且),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)写出曲线和直线的直角坐标方程;

2)若直线轴交点记为,与曲线交于两点,Qx轴下方,求.

查看答案和解析>>

同步练习册答案