精英家教网 > 高中数学 > 题目详情
记等差数列{an}的前n项的和为Sn,利用倒序求和的方法得:Sn=
n(a1+an)
2
;类似地,记等比数列{bn}的前n项的积为Tn,且bn>0(n∈N*),试类比等差数列求和的方法,将Tn表示成首项b1,末项bn与项数n的一个关系式,即Tn=
(b1bn)
n
2
(b1bn)
n
2
分析:等差数列与等比数列的定义的区别在于差与比,故类比倒序相加求和,可知倒序相乘求积,再利用等比数列的性质,即可得到结论.
解答:解:由题意,Tn=b1b2…bn①,倒序为Tn=bnbn-1…b1②,
①×②可得Tn2=(b1b2…bn)(bnbn-1…b1)=(b1bn)n
bn>0(n∈N*)
Tn=(b1bn)
n
2

故答案为:(b1bn)
n
2
点评:本题考查类比推理,解题的关键是类比解题的方法,类比倒序相加求和,可知倒序相乘求积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
1
2
,S4=20,则S6=(  )
A、16B、24C、36D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

记等差数列{an}的前n项和为Sn,若a1=
12
,S4=20,则S6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•广州一模)记等差数列{an}的前n项和为Sn,若a9=10,则 S17=
170
170

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•盐城三模)记等差数列{an}的前n项和为Sn
(1)求证:数列{
Sn
n
}是等差数列;
(2)若a1=1,且对任意正整数n,k(n>k),都有
Sn+k
+
Sn-k
=2
Sn
成立,求数列{an}的通项公式;
(3)记bn=aan(a>0),求证:
b1+b2+…+bn
n
b1+bn
2

查看答案和解析>>

同步练习册答案