精英家教网 > 高中数学 > 题目详情
对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].
则称[m,n]是该函数的“和谐区间”.
(1)证明:[0,1]是函数y=f(x)=x2的一个“和谐区间”.
(2)求证:函数y=g(x)=3-
5
x
不存在“和谐区间”.
(3)已知:函数y=h(x)=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
分析:(1)根据二次函数的性质,我们可以出y=f(x)=x2在区间[0,1]上单调递增,且值域也为[0,1]满足“和谐区间”的定义,即可得到结论.
(2)该问题是一个确定性问题,从正面证明有一定的难度,故可采用反证法来进行证明,即先假设区间[m,n]为函数的“和谐区间”,然后根据函数的性质得到矛盾,进而得到假设不成立,原命题成立.
(3)设[m,n]是已知函数定义域的子集,我们可以用a表示出n-m的取值,转化为二次函数的最值问题后,根据二次函数的性质,可以得到答案.
解答:解:(1)∵y=x2在区间[0,1]上单调递增.(2分)
又f(0)=0,f(1)=1,∴值域为[0,1],∴区间[0,1]是y=f(x)=x2的一个“和谐区间”.(4分)
(2)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),
故函数y=3-
5
x
在[m,n]上单调递增.
若[m,n]是已知函数的“和谐区间”,则
g(m)=m
g(n)=n
(8分)
故m、n是方程3-
5
x
=x
的同号的相异实数根.∵x2-3x+5=0无实数根,∴函数y=3-
5
x
不存在“和谐区间”.(10分)
(3)设[m,n]是已知函数定义域的子集.∵x≠0,[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),故函数y=
(a2+a)x-1
a2x
=
a+1
a
-
1
a2x
在[m,n]上单调递增.
若[m,n]是已知函数的“和谐区间”,则
h(m)=m
h(n)=n
(14分)
故m、n是方程
a+1
a
-
1
a2x
=x
,即a2x-(a2+a)x+1=0的同号的相异实数根.∵mn=
1
a2
>0
,∴m,n同号,只须△=a2(a+3)(a-1)>0,即a>1或a<-3时,已知函数有“和谐区间”[m,n],∵n-m=
(n+m)2-4mn
=
-3(
1
a
-
1
3
)
2
+
4
3
,∴当a=3时,n-m取最大值
2
3
3
(18分)
点评:本题考查的知识点是函数的单调性的性质,(2)中的确定性问题,要注意建立“正难则反”的思想,选择反证法来简化证明过程.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),如果存在区间[m,n]⊆D,同时满足:
①f(x)在[m,n]内是单调函数;
②当定义域是[m,n]时,f(x)的值域也是[m,n].则称[m,n]是该函数的“和谐区间”.
(1)求证:函数y=g(x)=3-
5
x
不存在“和谐区间”.
(2)已知:函数y=
(a2+a)x-1
a2x
(a∈R,a≠0)有“和谐区间”[m,n],当a变化时,求出n-m的最大值.
(3)易知,函数y=x是以任一区间[m,n]为它的“和谐区间”.试再举一例有“和谐区间”的函数,并写出它的一个“和谐区间”.(不需证明,但不能用本题已讨论过的y=x及形如y=
bx+c
ax
的函数为例)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数f(x),若存在区间M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的“等值区间”.给出下列三个函数:
f(x)=(
12
)x
;   ②f(x)=x3;    ③f(x)=log2x+1
则存在“等值区间”的函数的个数是
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)判断函数f(x)=
3
4
x+
1
x
(x>0)是否为闭函数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•崇明县一模)定义:对于定义域为D的函数f(x),如果存在t∈D,使得f(t+1)=f(t)+f(1)成立,称函数f(x)在D上是“T”函数.已知下列函数:
①f(x)=
1x
; 
②f(x)=log2(x2+2);
③f(x)=2x(x∈(0,+∞)); 
④f(x)=cosπx(x∈[0,1]),其中属于“T”函数的序号是
.(写出所有满足要求的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义域为D的函数f(x),若同时满足下列条件:①f(x)在D内有单调性;②存在区间[a,b]⊆D,使f(x)在区间[a,b]上的值域也为[a,b],则称f(x)为D上的“和谐”函数,[a,b]为函数f(x)的“和谐”区间.
(Ⅰ)求“和谐”函数y=x3符合条件的“和谐”区间;
(Ⅱ)判断函数f(x)=x+
4
x
(x>0)
是否为“和谐”函数?并说明理由.
(Ⅲ)若函数g(x)=
x+4
+m
是“和谐”函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案