【题目】《周髀算经》中给出了弦图,所谓弦图是由四个全等的直角三角形和中间一个小正方形拼成一个大的正方形,若图中直角三角形两锐角分别为,,且小正方形与大正方形面积之比为,则的值为( )
A. B. C. D.
【答案】D
【解析】
设大的正方形的边长为1,由已知可求小正方形的边长,可求cosα﹣sinα=,sinβ﹣cosβ=,且cosα=sinβ,sinα=cosβ,进而利用两角差的余弦函数公式,同角三角函数基本关系式即可计算得解.
设大的正方形的边长为1,由于小正方形与大正方形面积之比为9:25,
可得:小正方形的边长为,
可得:cosα﹣sinα=,①sinβ﹣cosβ=,②
由图可得:cosα=sinβ,sinα=cosβ,
①×②可得:=cosαsinβ+sinαcosβ﹣cosαcosβ﹣sinαsinβ=sin2β+cos2β﹣cos(α﹣β)=1﹣cos(α﹣β),
解得:cos(α﹣β)=.
故选:D.
科目:高中数学 来源: 题型:
【题目】如图所示的是某池塘中的浮萍蔓延的面积与时间月)的关系有以下叙述:
①这个指数函数的底数是2;
②第5个月时,浮萍的面积就会超过
③浮萍从蔓延到需要经过1.5个月;
④浮萍每个月增加的面积都相等;
⑤若浮萍蔓延到所经过的时间分别为则.其中正确的是
A. ①② B. ①②③④ C. ②③④⑤ D. ①②⑤
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过双曲线C:=1的右焦点F且与x轴不重合的直线交双曲线C于A、B两个点,定点D(,0).
(1)当直线AB垂直于x轴时,求直线AD的方程.
(2)设直线AD与直线x=1相交于点E,求证:FD∥BE.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:,直线l:y=kx+b与椭圆C相交于A、B两点.
(1)如果k+b=﹣,求动直线l所过的定点;
(2)记椭圆C的上顶点为D,如果∠ADB=,证明动直线l过定点P(0,﹣);
(3)如果b=﹣,点B关于y轴的对称点为B,向直线AB是过定点?如果是,求出定点的坐标;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著均有若干本),要求每人只借阅一本名著,每种名著均有人借阅,且甲只借阅《三国演义》,则不同的借阅方案种数为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
温差 | |||||
发芽数(颗) |
由表中根据月日至月的数据,求的线性回归方程中的,则为______,若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程____.(填“可靠”或“不可幕”)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,下列说法正确的是( )
(1)是的极大值点 ;(2)函数有且只有1个零点;(3)存在正实数,使得恒成立 ;(4)对任意两个正实数,且,若,则
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com