精英家教网 > 高中数学 > 题目详情

【题目】已知,其中.

(1是函数的极值点,求的值;

(2)求的单调区间;

(3)若上的最大值是0,求的取值范围.

【答案】(1);(2)时,增区间是,减区间是;当时,减区间是;当时,增区间是,递减区间是;(3)

【解析】

试题分析:(1)首先求得导函数,然后根据求得的值;(2)首先求得的零点值,然后分讨论函数的单调区间;(3)首先由(2)求得函数的最大值,由此求得的取值范围

试题解析:(1)由题意得

,经检验符合题意.........................2分

(2)令

时,的变化情况如下表:

0

0

0

的单调递增区间是

的单调递减区间是........................5分

时,的单调递减区间是

时,

的变化情况如下表:

0

0

0

的单调递增区间是

的单调递减区间是,............................... 8分

综上,当时,的单调递增区间是的单调递减区间是

时,的单调递减区间是

的单调递增区间是的单调递减区间是,......9分

(3)由(2)可知当时, 的最大值是

,所以不合题意,

时,上单调递减,

可得上的最大值为,符合题意,

上的最大值为0时,的取值范围是...........................12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某厂生产产品的年固定成本为250万元,每生产千件需另投入成本万元,当年产量不足80千件时(万元);当年产量不小于80千件时(万元),每千件产品的售价为50万元,该厂生产的产品能全部售完.

(1)写出年利润万元关于(千件)的函数关系;

(2)当年产量为多少千件时该厂当年的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂厂家的生产成本有以下三个部分:生产1单位试剂需要原料费50元;支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴所有职工20元组成;后续保养的平均费用是每单位试剂的总产量为单位,.

1把生产每单位试剂的成本表示为的函数关系,并求的最小值;

2如果产品全部卖出,据测算销售额关于产量单位的函数关系为,试问:当产量为多少时生产这批试剂的利润最高?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1求函数的最小值及曲线在点处的切线方程;

(2)若不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率为,点为坐标原点,若椭圆与曲线的交点分别为上),且两点满足

1)求椭圆的标准方程;

2)过椭圆上异于其顶点的任一点,作的两条切线,切点分别为,且直线轴、轴上的截距分别为,证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知抛物线,过点任作一直线与相交于两点,过点轴的平行线与直线相交于点为坐标原点)

1)证明: 动点在定直线上;

2)作的任意一条切线 (不含), 与直线相交于点与(1)中的定直线相交于点

证明: 为定值, 并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆及点

(1)若直线平行于,与圆相交于两点,,求直线的方程;

(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设是首项为1,公比为3的等比数列,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

)若在区间上为增函数,求的取值范围;

)当时,证明:

)当时,断方程是否有实数解,并说明理由.

查看答案和解析>>

同步练习册答案