【题目】已知函数f(x)=,其中a为常数.
(1)当a=1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为-2,求a的值.
【答案】(1);(2).
【解析】
(1)利用导数分析单调性,进而求最值;
(2)利用分类讨论,时函数f(x)的单调性与此时的最大值,并由已知构建方程求得参数即可.
(1)易知f(x)的定义域为(0,+∞),当a=1时,f(x)=-x+ln x,f′(x)=-1+=,
令f′(x)=0,得x=1.当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.
∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数.
∴f(x)max=f(1)=-1.
∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
(2)f′(x)=-a,x∈(0,e],∈.
①若,则f′(x)≥0,从而f(x)在(0,e]上是增函数,
∴f(x)max=f(e)=≥0,不合题意.
②若,令f′(x)>0得-a >0,结合x∈(0,e],解得0<x<;
令f′(x)<0得-a <0,结合x∈(0,e],解得<x≤e.
从而f(x)在上为增函数,在上为减函数,
∴f(x)max==-1=,
得,即a=.
∵,∴a=为所求.
故实数a的值为.
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱中,底面为等腰梯形,,,,,分别是的中点.
(1)证明:直线平面;
(2)求直线与面所成角的大小;
(3)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校组织甲、乙、丙、丁、戊、己等6名学生参加演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,且甲不是最后一个出场”的前提下,学生丙第一个出场的概率为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】杨辉三角是二项式系数在三角形中的一种排列,在欧洲这个表叫做帕斯卡三角形,帕斯卡是在1654年发现这一规律的,我国南宋数学家杨辉在1261年所著的《详解九章算法》一书中出现了如图所示的表,这是我国数学史上的一次伟大成就,如图所示,在“杨辉三角”中去除所有为1的项,依次构成数列,2,3,3,4,6,4,5 ,10 ,10,5,……,则此数列的前119项的和为__________.(参考数据:,,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班有男生27名,女生18名,用分层抽样的方法从该班中抽取5名学生去敬老院参加献爱心活动.
(1)求从该班男生、女生中分别抽取的人数;
(2)为协助敬老院做好卫生清扫工作,从参加活动的5名学生中随机抽取2名,求这2名学生均为女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网店经营的一种商品进行进价是每件10元,根据一周的销售数据得出周销售量(件)与单价(元)之间的关系如下图所示,该网店与这种商品有关的周开支均为25元.
(1)根据周销售量图写出(件)与单价(元)之间的函数关系式;
(2)写出利润(元)与单价(元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C的中心在原点,抛物线的焦点是双曲线C的一个焦点,且双曲线过点.
(Ⅰ)求双曲线的方程;
(Ⅱ)设直线与双曲线C交于A,B两点,试问:k为何值时,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设.若满射,满足:对任意的,,则称为“和谐函数”.记 ,.设“和谐映射”为满足条件:存在正整数,使得(1)当时,若,,则 ;(2)若 ,,则,求的最大可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com