精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}中,a11an0,前n项和为Sn,若nN*,且n≥2).

1)求数列{an}的通项公式;

2)记,求数列{cn}的前n项和Tn

【答案】(1) an2n1(2) Tn

【解析】

1)根据题意,有anSnSn1,结合分析可得1,则数列{}是以1为首项,公差为1的等差数列,由等差数列的通项公式可得1+n1)=n,则Snn2,据此分析可得答案;

2)由(1)的结论可得cn=(2n1)×22n1;进而可得Tn1×2+3×23+5×25+……+2n1)×22n1,由错位相减法分析可得答案.

(1)数列{an}中,anSnSn1,(nN*,且n≥2)①

,(nN*,且n≥2)②

÷②可得:1

则数列{}是以1为首项,公差为1的等差数列,

1+n1)=n

Snn2

n1时,a1S11

n≥2时,anSnSn12n1

a11也符合该式,

an2n1

(2)有(1)的结论,an2n1

cn=(2n1×22n1

Tn1×2+3×23+5×25+……+2n1×22n1,③;

4Tn1×23+3×25+5×27+……+2n1×22n+1,④;

③﹣④可得:﹣3Tn2+223+25+……+22n1)﹣(2n1×22n+12n×22n+1

变形可得:Tn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆的一个顶点与抛物线的焦点重合,分别是椭圆的左、右焦点,其离心率椭圆右焦点的直线与椭圆交于两点.

1)求椭圆的方程;

2)是否存在直线,使得?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为.以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)若曲线上的点到直线l的最大距离为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校教务处对学生学习的情况进行调研,其中一项是:对学习数学的态度是否与性别有关,可见随机抽取了30名学生进行了问卷调查,得到了如下联表:

男生

女生

合计

喜欢

10

不喜欢

8

合计

30

已知在这30人中随机抽取1人,抽到喜欢学习数学的学生的概率是.

(1)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程);

(2)若从喜欢学习数学的女生中抽取2人进行调研,其中女生甲被抽到的概率为多少?(要写求解过程)

(3)试判断是否有95%的把握认为喜欢学习数学与性别有关?

附:,其中.

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在我们的教材必修一中有这样一个问题,假设你有一笔资金,现有三种投资方案供你选择,这三种方案的回报如下:

方案一:每天回报元;

方案二:第一天回报元,以后每天比前一天多回报元;

方案三:第一天回报元,以后每天的回报比前一天翻一番.

记三种方案第天的回报分别为.

1)根据数列的定义判断数列的类型,并据此写出三个数列的通项公式;

2)小王准备做一个为期十天的短期投资,他应该选择哪一种投资方案?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.

(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;

(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点,x轴的非负半轴为极轴,建立极坐标系,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为t为参数),圆C的极坐标方程为

1)求直线l和圆C的直角坐标方程;

2)若点在圆C上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,其中

1)讨论函数的单调性;

2)当时,试证明:函数有且仅有两个零点,且

查看答案和解析>>

同步练习册答案