精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设于点
证明:当点在椭圆上移动时,点在某定直线上.
(Ⅰ)椭圆的方程为;(Ⅱ)3;(III)点在直线上.

试题分析:(Ⅰ)由抛物线的焦点求出椭圆的焦点,又椭圆过点,得:
,解方程组可得椭圆的方程:
(Ⅱ)设出切点的坐标和切线的方程,利用直线和椭圆相切的条件,证明为定值.
(III)利用(Ⅱ)的结果,由,写出直线的方程,可解出于点
的坐标,进而证明当点在椭圆上移动时,点在某定直线上.

试题解析:(Ⅰ)由题意得 ,
,         2分
消去可得,,解得(舍去),则
求椭圆的方程为.        4分
(Ⅱ)设直线方程为,并设点
.
,         6分
,当,直线与椭圆相交,所以
,       8分
,整理得:.而,代入中得
为定值.        10分
(用导数求解也可,若直接用切线公式扣4分,只得2分)
(III)的斜率为:,又由,
从而得直线的方程为:,联立方程,
消去得方程,因为, 所以 ,
即点在直线上.         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆 的离心率为 ,点 为其下焦点,点为坐标原点,过 的直线 (其中)与椭圆 相交于两点,且满足:.

(1)试用  表示
(2)求  的最大值;
(3)若 ,求  的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知点,动点轴上的正射影为点,且满足直线.
(Ⅰ)求动点M的轨迹C的方程;
(Ⅱ)当时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在直线,使与椭圆交于不同的两点,且线段恰被直线平分?若存在,求出的斜率取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知线段MN的两个端点M、N分别在轴、轴上滑动,且,点P在线段MN上,满足,记点P的轨迹为曲线W.
(1)求曲线W的方程,并讨论W的形状与的值的关系;
(2)当时,设A、B是曲线W与轴、轴的正半轴的交点,过原点的直线与曲线W交于C、D两点,其中C在第一象限,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是抛物线上的两个点,点的坐标为,直线的斜率为k, 为坐标原点.
(Ⅰ)若抛物线的焦点在直线的下方,求k的取值范围;
(Ⅱ)设C为W上一点,且,过两点分别作W的切线,记两切线的交点为,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆过定点,圆心在抛物线上,为圆轴的交点.
(1)当圆心是抛物线的顶点时,求抛物线准线被该圆截得的弦长.
(2)当圆心在抛物线上运动时,是否为一定值?请证明你的结论.
(3)当圆心在抛物线上运动时,记,求的最大值,并求出此时圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的离心率,右焦点为,方程的两个实根,则点(   )
A.必在圆B.必在圆
C.必在圆D.以上三种情况都有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线焦点的弦,过两点分别作其准线的垂线,垂足分别为倾斜角为,若,则
.②
, ④ ⑤
其中结论正确的序号为                

查看答案和解析>>

同步练习册答案