精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知直线的参数方程为为参数).以坐标原点为极点,以坐标原点为极点,轴的非负半轴为极轴,取相同的长度单位建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求直线的普通方程和曲线的直角坐标方程;

(Ⅱ)若曲线上的点到直线的最大距离为6,求实数的值.

【答案】(Ⅰ)直线的普通方程为.曲线的直角坐标方程为;(Ⅱ).

【解析】分析:()消去参数m可得直线的普通方程为.极坐标方程化为直角坐标方程可得曲线的直角坐标方程为

()由题意结合直线与圆的位置关系整理计算可得

详解:(),消去 ,

所以直线的普通方程为.

,,

代入,,

所以曲线的直角坐标方程为

()曲线:的圆心为,半径为,

圆心到直线 的距离为,

若曲线上的点到直线的最大距离为6,

,,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若,证明: 上存在唯一零点;

(2)设函数,( 表示中的较小值),若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数轴于两点(不重合),交轴于. 三点.下列说法正确的是( )

圆心在直线上;

的取值范围是

半径的最小值为

存在定点,使得圆恒过点.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】xOy平面上,将双曲线的一支 及其渐近线和直线围成的封闭图形记为D,如图中阴影部分,记Dy轴旋转一周所得的几何体为 的水平截面,计算截面面积,利用祖暅原理得出体积为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(Ⅰ)求证:

(Ⅱ)求证:

(Ⅲ)在(Ⅱ)中的不等式中,能否找到一个代数式,满足所求式?若能,请直接写出该代数式;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对于函数f(x)定义域内任意的两个自变量的值x1 , x2 , 当x1<x2时,都有f(x1)≤f(x2),且存在两个不相等的自变量值y1 , y2 , 使得f(y1)=f(y2),就称f(x)为定义域上的不严格的增函数.
则 ① , ②
, ④
四个函数中为不严格增函数的是 ,若已知函数g(x)的定义域、值域分别为A、B,A={1,2,3},BA,且g(x)为定义域A上的不严格的增函数,那么这样的g(x)有 个.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)试求f(x)的单调区间;
(2)求证:不等式对于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品原来每件售价为25元,年销售量8万件.

(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?

(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义运算: ,例如:34=3,(﹣2)4=4,则函数f(x)=x2(2x﹣x2)的最大值为

查看答案和解析>>

同步练习册答案