精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=$\frac{c^2}{{{x^2}+ax+a}}$,其中a为实数.
(Ⅰ)若f(x)的定义域为R,求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求f(x)的单调递减区间.

分析 (Ⅰ)若f(x)的定义域为R,推出分母不为0,利用判别式求解,即可求a的取值范围;
(Ⅱ)当f(x)的定义域为R时,求出函数的导数,通过导函数小于0,列出不等式求f(x)的单调递减区间.

解答 19解:(Ⅰ)f(x)的定义域为R,∴x2+ax+a≠0恒成立,∴△=a2-4a<0,∴0<a<4,即当0<a<4时f(x)的定义域为R.
(Ⅱ)$f'(x)=\frac{{x(x+a-2){e^x}}}{{{{({x^2}+ax+a)}^2}}}$,令f′(x)≤0,得x(x+a-2)≤0.
由f′(x)=0,得x=0或x=2-a,又∵0<a<4,∴0<a<2时,由f′(x)<0得0<x<2-a;
当a=2时,f′(x)≥0;当2<a<4时,由f′(x)<0得2-a<x<0,
即当0<a<2时,f(x)的单调减区间为(0,2-a);
当2<a<4时,f(x)的单调减区间为(2-a,0)

点评 本题考查函数的导数的综合应用,函数的单调性以及函数的定义域的求法,函数恒成立问题的解决方法,考查分类讨论思想以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.在区间[-2,3]上任取一个数a,则关于x的方程x2-2ax+a+2=0有根的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设向量$\overrightarrow{AB}$=(2,6),$\overrightarrow{BC}$=(sinθ,1),θ∈(0,π).
(1)若A、B、C三点共线,求cos(θ+$\frac{3π}{2}$);
(2)若$\overrightarrow{AC}$•$\overrightarrow{BC}$<$\frac{33}{4}$,求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线的两个焦点为F1(-$\sqrt{10}$,0)、F2($\sqrt{10}$,0),M是此双曲线上的一点,且满足$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$=2,|$\overrightarrow{M{F}_{1}}$|•|$\overrightarrow{M{F}_{2}}$|=0,则该双曲线的方程是(  )
A.$\frac{{x}^{2}}{9}$-y2=1B.x2-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{7}$=1D.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为-2或1..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin2(ωx)-$\frac{1}{2}$(ω>0)的周期为π,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为(  )
A.πB.$\frac{3π}{4}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知f(x)=sin2x-sin4x,则f(x)的单调增区间为(  )
A.[-$\frac{π}{4}$+kπ,$\frac{π}{4}$+kπ](k∈Z)B.[$\frac{π}{4}$+kπ,$\frac{3π}{4}$+kπ](k∈Z)C.[-$\frac{π}{4}$+$\frac{kπ}{2}$,$\frac{kπ}{2}$](k∈Z)D.[$\frac{kπ}{2}$,$\frac{π}{4}$+$\frac{kπ}{2}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:${(\frac{16}{81})^{-0.75}}-lg25-2lg2$=$\frac{11}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1、F2,过F1作倾斜角为30°的直线交双曲线的右支于点P,若∠PF1F2的平分线与∠F1PF2的平分线的交点为Q(1,1),则双曲线的渐近线方程为(  )
A.y=±$\sqrt{3+2\sqrt{3}}$xB.y=±$\sqrt{2\sqrt{3}-3}$xC.y=±($\sqrt{3}$+1)xD.y=±($\sqrt{3}$-1)x

查看答案和解析>>

同步练习册答案