精英家教网 > 高中数学 > 题目详情
19.lg25+lg4+6${\;}^{lo{g}_{6}2}$+(-8.2)0=5.

分析 利用对数与指数幂的运算法则即可得出.

解答 解:lg25+lg4+6${\;}^{lo{g}_{6}2}$+(-8.2)0=2lg5+2lg2+2+1=2(lg5+lg2)+3=2+3=5.
故答案为:5.

点评 本题考查了对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在△AnBnCn中,记角An、Bn、Cn所对的边分别为an、bn、cn,且这三角形的三边长是公差为1的等差数列,若最小边an=n+1,则$\underset{lim}{n→∞}$Cn=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.欧拉公式eix=cosx+isinx(i为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里占用非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,e2i表示的复数在复平面中位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)证明:数列{an}是等差数列,并求其前n项和Sn
(2)设数列{bn}满足bn=$\frac{{a}_{n}+11}{{2}^{n}}$,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$及实数t满足|$\overrightarrow{a}$+t$\overrightarrow{b}$|=3.若$\overrightarrow{a}$•$\overrightarrow{b}$=2,则t的最大值是$\frac{9}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=ax2+bx+c(a≠0)满足条件:f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);      
(2)求f(x)在区间[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若cosα=-$\frac{{\sqrt{3}}}{3}$,sin2α>0,则tanα的值为(  )
A.-$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}}}{2}$C.-$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简求值:
(1)sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-sin($\frac{π}{4}$+3x)sin($\frac{π}{3}$-3x);
(2)sin(α+β)cosα-cos(α+β)sinα;
(3)$\frac{sin27°+cos45°sin18°}{cos27°-sin45°sin18°}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.各项均为正数的数列{an}满足:na2n+1=(n+1)a2n+anan+1,且a3=$\frac{3π}{4}$,若Sn为数列{an}的前n项和,则tanS2015等于(  )
A.-$\sqrt{3}$B.-1C.0D.1

查看答案和解析>>

同步练习册答案