精英家教网 > 高中数学 > 题目详情

【题目】如图1,甲船在A处,乙船在A处的南偏东45°方向,距A有9n mile并以20n mile/h的速度沿南偏西15°方向航行,若甲船以28n mile/h的速度航行,应沿什么方向,用多少h能尽快追上乙船?

【答案】甲船沿南偏东sin的方向用h可以追上乙船。

【解析】试题分析:设th甲舰可追上乙舰,相遇点记为C

则在△ABC中,AC28tBC20tAB9∠ABC120°

由余弦定理

AC2AB2BC22AB·BCcosABC

(28t)281(20t)22×9×20t×()

整理得128t260t270

解得t (t=-舍去)

BC15nmile),AC21( nmile)

由正弦定理

sinBAC×

BACarcsin

故甲舰沿南偏东arcsin 的方向用0.75 h可追上乙舰.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a、b、c成等比数列,非零实数x,y分别是a与b,b与c的等差中项.
(1)已知 ①a=1、b=2、c=4,试计算 的值;
②a=﹣1、b= 、c=﹣ ,试计算 的值
(2)试推测 与2的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【河南省2017届高中毕业年级考前预测数学(理)】已知圆与直线相切,设点为圆上一动点, 轴于,且动点满足,设动点的轨迹为曲线

(1)求曲线的方程;

(2)直线与直线垂直且与曲线交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前项和为,公差,且成等比数列.

(1)求数列的通项公式;

(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2015江苏高考,18】如图,在平面直角坐标系xOy中,已知椭圆的离心率为,且右焦点F到左准线l的距离为3.

(1)求椭圆的标准方程;

(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l和AB于点P,C,若PC=2AB,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.

(1)求甲、乙两家公司共答对道题目的概率;

(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2ωx﹣sin2ωx+2 cosωxsinωx,其中ω>0,若f(x)相邻两条对称轴间的距离不小于
(1)求ω的取值范围及函数f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,a= ,b+c=3,当ω最大时,f(A)=1,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若函数 是函数的两个零点, 是函数的导函数,证明: .

查看答案和解析>>

同步练习册答案