精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.
(1)求证AC⊥PB;
(2)求PA与平面PBC所成角的正弦值.
分析:(1)要证AC⊥PB,可以通过证明AC⊥面PDB实现,而后者可由AC⊥BD,AC⊥PD证得.
(2)求出A到平面PBC的距离为h(可以利用等体积法),再与PA作比值,即为PA与平面PBC所成角的正弦值.
解答:(1)证明∵底面ABCD为菱形,∴AC⊥BD,
∵PD⊥底面ABCD,∴AC⊥PD,
∵BD∩PD=D,∴AC⊥面PDB,
∵PB?面PDB∴AC⊥PB.
(2)解:设PD=AD=1,设A到平面PBC的距离为h,
则由题意PA=PB=PC=
2
,S△ABC=
1
2
×
3
×
1
2
=
3
4

在等腰△PBC中,可求S△PBC=
1
2
×1×
(
2
)
2
(
1
2
)
2
=
7
4

∴V A-PBC=V P-ABC
1
3
×h×
7
4
=
1
3
×1×
3
4
,h=
21
7

∴sinθ=
h
PA
=
21
7
2
=
42
14
点评:本题考查空间直线和直线垂直的判定.线面角求解.考查空间想象、推理论证能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案