精英家教网 > 高中数学 > 题目详情
14.如图1,已知正方体ABCD-A1B1ClD1的棱长为a,动点M、N、Q分别在线段AD1,B1C,C1D1上.当三棱锥Q-BMN的俯视图如图2所示时,三棱锥Q-BMN的正视图面积等于$\frac{1}{4}{a}^{2}$.

分析 由三棱锥Q-BMN的俯视图可得Q在D1,N在C,所以三棱锥Q-BMN正视图为△D1EC(E为D1D的中点),即可求出三棱锥Q-BMN正视图的面积.

解答 解:由三棱锥Q-BMN的俯视图可得Q在D1,N在C,
所以三棱锥Q-BMN正视图为△D1EC(E为D1D的中点),
其面积为$\frac{1}{2}×\frac{a}{2}×a$=$\frac{1}{4}{a}^{2}$.
故答案为:$\frac{1}{4}{a}^{2}$.

点评 本题考查三棱锥Q-BMN正视图的面积,考查学生的计算能力,确定三棱锥Q-BMN正视图为△D1EC是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体最长的梭长为(  )
A.16B.5C.$\sqrt{41}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.方程ax2-3x-1=0至少有一个负数根,则实数a的取值范围是(  )
A.(-∞,-$\frac{9}{4}$)B.(-∞,-$\frac{9}{4}$]C.[-$\frac{9}{4}$,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设M,P是两个非空集合,定义M与P的差集为:M-P={x|x∈M,且x∉P},若M={1,2,3,4},P={3,4,5}则M-P={1,2},M-(M-P)={3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线C;$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0))的左右焦点分别为F1,F2,双曲线C上一点P到右焦点F2的距离是实轴两端点到右焦点距离的等差中项,若△PF1F2为锐角三角形,则双曲线C的离心率的取值范围是(  )
A.($\frac{1+\sqrt{5}}{2}$,+∞)B.(1,1+$\sqrt{3}$)C.($\frac{1+\sqrt{5}}{2}$,1+$\sqrt{3}$)D.($\frac{1+\sqrt{5}}{2}$,2)∪(2,1+$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.根据《商品房销售管理办法》规定,商品房面积误差绝对值在3%以内(含3%)的,应具实结算房价款,用x表示实际测得面积,用a表示购房合同标注的面积,某人购房后和开发商具实结算房款,则该房屋的实际测定的面积满足如下哪个不等式(  )
A.|x-a|≤3aB.|x-a|<3aC.|x-a|<0.03aD.|x-a|≤0.03a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)化简 a${\;}^{\frac{2}{3}}$•b${\;}^{\frac{1}{2}}$•(2a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷($\frac{1}{6}$a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$); 
(2)计算 ($\sqrt{2}$-1)0+($\frac{16}{9}$)${\;}^{\frac{1}{2}}$+8${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数$f(x)=1o{g_{\frac{1}{2}}}(2{x^2}-ax+3)$在区间[-1,+∞)上是减函数,则实数a的取值范围是(  )
A.(-∞,-5)∪[-4,+∞)B.(-5,-4]C.(-∞,-4]D.[-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.△ABC中,∠A=90°,BC=2,点A是线段EF中点,EF=2,则$\overrightarrow{EF}$与$\overrightarrow{BC}$的夹角为45°,则$\overrightarrow{BE}•\overrightarrow{CF}$=$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案