精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a-
2
2x+1
g(x)=
1
f(x)-a

(1)若函数f(x)为奇函数,求a的值;
(2)若g(2x)-a•g(x)=0,有唯一实数解,求a的取值范围;
(3)若a=2,则是否存在实数m,n(m<n<0),使得函数y=f(x)的定义域和值域都为[m,n].若存在,求出m,n的值;若不存在,请说明理由.
分析:(1)由奇函数的性质f(0)=0,代入可求a
(2)令t=2x>0,则可转化为方程t2-at+1-a=0在(0,+∞)上有唯一解,令h(t)=t2-at+1-a,则h(0)≤0,可求
(3)法一:由a=2可得,f(x)=2-
2
2x+1
,证易f(x)在R上是增函数,假设存在实数m、n(m<n<0)满足题意,有
f(m)=m
f(n)=n
判断方程的解的存在情况即可
法二:易知f(x)在R上是增函数,假设存在实数m、n(m<n<0)满足题意,有
f(m)=m
f(n)=n
即m、n是方程f(x)=x的两个不等负根,而由2-
2
2x+1
=x
2x+1=-
2
x-2
,令h(x)=2x+1,g(x)=-
2
x-2
结合函数g(x)在(-∞,0]上为单调递增函数可得(x)>g(x),即方程2x+1=-
2
x-2
在(-∞,0)上无解
解答:解:(1)∵f(x)为奇函数
∴f(-x)=-f(x)∴f(0)=0
∴a=1(2分)
(2)∵g(x)=
1
f(x)-a
=-
2x+1
2
(1分)
g(2x)-ag(x)=-
22x+1
2
+a×
2x+1
2
=0
(1分)
令t=2x>0,则问题转化为方程t2-at+1-a=0在(0,+∞)上有唯一解.(1分)
令h(t)=t2-at+1-a,则h(0)≤0
∴a≥1(2分)
(3)法一:不存在实数m、n满足题意.(1分)
f(x)=2-
2
2x+1
∵y=2x在R上是增函数∴f(x)在R上是增函数(2分)
假设存在实数m、n(m<n<0)满足题意,有
2-
2
2m+1
=m…(1)
2-
2
2n+1
=n…(2)
(2分)
∵m<0∴0<2m<1
0<2-
2
2m+1
<1

∴(1)式左边>0,右边<0,故(1)式无解.
同理(2)式无解.
故不存在实数m、n满足题意.(2分)
法二:不存在实数m、n满足题意.(1分)
易知f(x)=2-
2
2x+1
∵y=2x在R上是增函数∴f(x)在R上是增函数(2分)
假设存在实数m、n(m<n<0)满足题意,有
f(m)=m
f(n)=n

即m、n是方程f(x)=x的两个不等负根.(1分)
2-
2
2x+1
=x
2x+1=-
2
x-2

令h(x)=2x+1,g(x)=-
2
x-2
(1分)
∵函数g(x)在(-∞,0]上为单调递增函数
∴当x<0时,g(x)<g(0)=1
而h(x)>1,∴h(x)>g(x)
∴方程2x+1=-
2
x-2
在(-∞,0)上无解
故不存在实数m、n满足题意.(2分)
点评:本题主要考查了函数的奇偶性单调性及函数的零点与方程的根的相互转化,解题的关键是熟练掌握函数的性质并能灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案