精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)若,讨论的单调性;

2)若在区间内有两个极值点,求实数a的取值范围.

【答案】1上单调递减,在上单调递增. 2

【解析】

1)求出函数的导数,解关于导函数的方程,求出函数的单调区间,求出函数的极值即可;

2)求出函数的导数,通过讨论的范围,求出函数的单调区间,结合函数的零点个数确定的范围即可.

解:(1)由题意可得的定义域为

时,易知

,由

上单调递减,在上单调递增.

2)由(1)可得

时,

,则

内有两个极值点,

内有两个零点,

.

,则

,即时,,所以在上单调递减,

的图像至多与x轴有一个交点,不满足题意.

,即时,在单调递增,

的图像至多与x轴有一个交点,不满足题意.

,即时,上单调递增,在上单调递减

知,要使内有两个零点,必须满足,解得.

综上,实数a的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2017·衢州调研)已知四棱锥PABCD的底面ABCD是菱形,∠ADC120°AD的中点M是顶点P在底面ABCD的射影,NPC的中点.

(1)求证:平面MPB⊥平面PBC

(2)MPMC,求直线BN与平面PMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.证明:

1)存在唯一x0∈(0,1),使f(x0)0

2)存在唯一x1∈(12),使g(x1)0,且对(1)中的x0,有x0x1<2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)恒成立的实数的最大值

(2)设,且满足,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求证:

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和函数的最值;

(2)已知关于的不等式对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线l的参数方程为(t为参数,).

(1)写出直线l的普通方程和曲线C的直角坐标方程;

(2)若直线l与曲线C交于A,B两点,直线l的倾斜角,P点坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】生男生女都一样,女儿也是传后人.由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.

1)完成下列列联表,并判断能否有95%的把握认为是否生二孩与头胎的男女情况有关;

生二孩

不生二孩

合计

头胎为女孩

60

头胎为男孩

合计

200

2)在抽取的200户家庭的样本中,按照分层抽样的方法在头胎生女孩家庭中抽取了5户,进一步了解情况,在抽取的5户中再随机抽取3户,求这3户中恰好有2户生二孩的概率.

附:

0.15

0.05

0.01

0.001

2.072

3.841

6.635

10.828

(其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面,且分别为棱的中点.

1)证明:直线共面;并求其所成角的余弦值;

2)在棱上是否存在点,使得平面,若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案