(本题满分12分)
已知椭圆的中心在坐标原点,焦点在轴上,椭圆上的点到焦点距离的最大值为,最小值为.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点.求证:直线过定点,并求出该定点的坐标.
(1)椭圆的标准方程为;(2)直线过定点,定点坐标为
【解析】本题考查椭圆的性质及应用,考查直线与椭圆的位置关系,考查韦达定理的运用,综合性强,属于中档题.
(1)由已知椭圆C上的点到焦点距离的最大值为3,最小值为1,可得:a+c=3,a-c=1,从而可求椭圆的标准方程;
(2)直线与椭圆方程联立,利用以AB为直径的圆过椭圆的右顶点D(2,0),结合根的判别式和根与系数的关系求解,即可求得结论.
解:(1)由题意设椭圆的标准方程为,
由已知得:,
椭圆的标准方程为-------4分
(2)设
联立 得,则----5分
-----8分
又
因为以为直径的圆过椭圆的右顶点,
,即
-
解得:,且均满足------9分
当时,的方程,直线过点,与已知矛盾;
当时,的方程为,直线过定点
所以,直线过定点,定点坐标为------12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com