精英家教网 > 高中数学 > 题目详情
5.请用十字相乘法解一元二次方程:2x2+3=7x.

分析 2x2+3=7x,因式分解为:(2x-1)(x-3)=0,即可得出.

解答 解:2x2+3=7x,化为2x2-7x+3=0.
因式分解为:(2x-1)(x-3)=0,
解得x=$\frac{1}{2}$,或3.

点评 本题考查了利用十字相乘法解一元二次方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.角α的终边经过点P(-2sin60°,2cos30°),则sinα=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\root{3}{x}-{(\frac{1}{2})^x}$,那么在下列区间中含有函数f(x)零点的是(  )
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆的中心在原点,焦点在x轴上,直线x-y-1=0经过椭圆的一个焦点和一个顶点,
(1)求椭圆的标准方程;
(2)直线与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的前n项和Sn=5n2-n,则a6+a7+a8+a9+a10的值为(  )
A.370B.270C.250D.490

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.四棱柱ABCD-A1B1C1D1的三视图如图所示,E、F分别为A1B1、CC1的中点.
(1)求证:EF∥平面A1BC;
(2)求D1到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在⊙O中,AB=2CD.求证:$\widehat{AB}$>2$\widehat{CD}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若sinθ=$\frac{k+1}{k-3}$,cosθ=$\frac{k-1}{k-3}$,且θ的终边不落在坐标轴上,则tanθ的值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.△ABC中,a,b,c分别是角A,B,C的对边,且sinA+cosA=$\frac{\sqrt{3}-1}{2}$,a=7,3sinB=5sinC,则b+c的值为(  )
A.12B.8$\sqrt{3}$C.8$\sqrt{2}$D.8

查看答案和解析>>

同步练习册答案