分析 (1)利用椭圆的定义可得:△F1PF2的周长=2a+2c.
(2)设|PF1|=m,|PF2|=n,m+n=2$\sqrt{5}$.在△F1PF2中,由余弦定理可得:4c2=m2+n2-2mncos30°,代入化简整理即可得出.
(3)利用(2)及其△F1PF2的面积S=$\frac{1}{2}mn$sin30°,即可得出.
解答 解:(1)∵P为椭圆$\frac{{y}^{2}}{5}$+$\frac{{x}^{2}}{4}$=1上的一点,F1,F2为焦点,
∴△F1PF2的周长=2a+2c=$2\sqrt{5}$+2.
(2)设|PF1|=m,|PF2|=n,
m+n=2$\sqrt{5}$.
在△F1PF2中,由余弦定理可得:4c2=m2+n2-2mncos30°=(m+n)2-2mn-$\sqrt{3}$mn,
化为4=$(2\sqrt{5})^{2}$-mn$(2+\sqrt{3})$,
解得mn=16$(2-\sqrt{3})$.
(3)△F1PF2的面积S=$\frac{1}{2}mn$sin30°=4(2-$\sqrt{3}$).
点评 本题考查了椭圆的定义标准方程及其性质、余弦定理、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com