精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆经过点,离心率为

)求椭圆的方程.

)直线与椭圆交于两点,点是椭圆的右顶点.直线与直线分别与轴交于点两点,试问在轴上是否存在一个定点使得?若是,求出定点坐标;若不是,说明理由.

【答案】1)椭圆的方程是;(2)线段为直径的圆过轴上的定点

【解析】

试题

由题意结合椭圆所过的点和椭圆的离心率可求得.则椭圆的方程为.

Ⅱ)设存在定点使得.联立直线方程与椭圆方程可得.,结合韦达定理有直线的方程为:,,直线的方程为:,.由向量垂直的 充要条件有,据此求解关于n的方程可得.则存在定点使得.

试题解析:

Ⅰ)由题意可知,,,.

解得,.

所以.

所以椭圆的方程为.

Ⅱ)设存在定点使得.

.

,.

因为,所以直线的方程为:,,

直线的方程为:,.

则有,,

,整理得,.

所以存在定点使得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于( )(参考公式:

A. 2B. C. 4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的上、下焦点分别为,上焦点到直线的距离为3,椭圆的离心率.

(1)求椭圆的方程;

(2)椭圆,设过点斜率存在且不为0的直线交椭圆两点,试问轴上是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市,简称文明城市,是指在全面建设小康社会中市民整体素质和城市文明程度较高的城市.全国文明城市称号是反映中国大陆城市整体文明水平的最高荣誉称号.为普及相关知识,争创全国文明城市,某市组织了文明城市知识竞赛,现随机抽取了甲、乙两个单位各5名职工的成绩(单位:分)如下表:

(1)根据上表中的数据,分别求出甲、乙两个单位5名职工的成绩的平均数和方差,并比较哪个单位的职工对文明城市知识掌握得更好;

(2)用简单随机抽样法从乙单位5名职工中抽取2人,求抽取的2名职工的成绩差的绝对值不小于4的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是正方形,顶点在底面的射影是底面的中心,且各顶点都在同一球面上,若该四棱锥的侧棱长为,体积为4,且四棱锥的高为整数,则此球的半径等于(参考公式:)( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点是坐标原点的抛物线的焦点轴正半轴上,圆心在直线上的圆轴相切,且关于点对称.

(1)求的标准方程;

(2)过点的直线交于,与交于求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

购买某种保险,每个投保人每年度向保险公司交纳保费元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为

)求一投保人在一年度内出险的概率

)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元)。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

同步练习册答案