精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow{e_1}=(1,0)$,$\overrightarrow{e_2}=(0,1)$,$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$,$\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$,则$|\overrightarrow a+\overrightarrow b|$=(  )
A.$3\sqrt{2}$B.$4\sqrt{2}$C.$5\sqrt{2}$D.$5\sqrt{3}$

分析 根据平面向量的坐标运算,求出向量$\overrightarrow{a}$+$\overrightarrow{b}$以及它的模长即可.

解答 解:∵$\overrightarrow{e_1}=(1,0)$,$\overrightarrow{e_2}=(0,1)$,
∴$\overrightarrow a=3\overrightarrow{e_1}-2\overrightarrow{e_2}$=(3,0)-(0,2)=(3,-2),
$\overrightarrow b=4\overrightarrow{e_1}+\overrightarrow{e_2}$=(4,0)+(0,1)=(4,1),
∴$\overrightarrow{a}$+$\overrightarrow{b}$=(7,-1)
∴$|\overrightarrow a+\overrightarrow b|$=$\sqrt{{7}^{2}{+(-1)}^{2}}$=5$\sqrt{2}$.
故选:C.

点评 本题考查了平面向量的坐标运算及其应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,斜率k(k≥0)的直线l过椭圆中心O且与椭圆的两个交点从左至右为E,G,与直线l垂直的直线m与椭圆的两个交点,从上至下为F,H,当四边形EFGH为正方形时面积为$\frac{8}{3}$.
(1)求椭圆的方程;
(2)求四边形EFGH的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的前n和为Sn,满足Sn=an+1+n2-3,n∈N*,且S3=15.
(1)求a1,a2,a3的值;
(2)猜想数列{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,函数g(x)=-x3+2x2+mx+5在(-∞,+∞)内单调递减,则实数m等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集$U=\left\{{({x,y})\left|{y=x+1,x,y∈R}\right.}\right\},M=\left\{{({x,y})\left|{\frac{y-3}{x-2}=1}\right.}\right\}$,则∁UM=(  )
A.B.{(2,3)}C.(2,3)D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列四个命题中正确的有①②③④.(填所有正确命题的序号)
①函数y=x与y=sinx的图象恰有一个公共点;
②函数y=lnx与y=sinx的图象恰有一个公共点;
③函数y=$\frac{1}{x}$与y=sinx的图象有无数个公共点;
④函数y=ex与y=sinx的图象有无数个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在三棱锥P-ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA⊥AC,PA=6,BC=8,DF=5.
求证:
(1)直线PA∥平面DEF;
(2)PA⊥AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{9}+\frac{y^2}{4}=1$.
(1)求椭圆C的长轴和短轴的长、离心率、焦点坐标;
(2)已知椭圆C上一点P到左焦点的距离为4,求点P到右准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=log4(ax-2x•k)(a>0,a≠1,k为常数),求f(x)的定义域.

查看答案和解析>>

同步练习册答案