精英家教网 > 高中数学 > 题目详情
17.已知实数x,y满足$\left\{\begin{array}{l}y≥1\\ y≤2x-1\\ x+y≤m\end{array}\right.$,如果目标函数z=3x-2y的最小值为-1,则实数m等于8.

分析 作出不等式组对应的平面区域,利用目标函数z=3x-2y的最小值是-1,确定m的取值.

解答 解:作出不等式组对应的平面区域如图:
由$\left\{\begin{array}{l}{x+y=m}\\{y=2x-1}\end{array}\right.$,解得A($\frac{m+1}{3}$,$\frac{2m-1}{3}$),
由目标函数z=3x-2y的最小值是-1,
即当z=-1时,m+1-$\frac{2(2m-1)}{3}$=-1,
解得:m=8,
故答案为:8.

点评 本题主要考查线性规划的应用,根据条件求出m的值是解决本题的关键,利用数形结合是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lg(x2-2x-3)的定义域为集合A,函数$g(x)=\sqrt{2-|x|}$的定义域为集合B,定义集合A-B={x|x∈A且x∉B}.
(1)求A-B;
(2)若C={x|m-1<x<2m+1},C⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow{e_1}$,$\overrightarrow{e_2}$,$\overrightarrow{e_3}$为单位向量,且$\overrightarrow{e_3}=\frac{1}{2}\overrightarrow{e_1}+k\overrightarrow{e_2}$,(k>0),若以向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$为两边的三角形的面积为$\frac{1}{2}$,则k的值为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],且a+b≠0,有$\frac{f(a)+f(b)}{a+b}>0$恒成立.
(1)判断f(x)在[-1,1]上的单调性,并证明你的结论;
(2)解不等式f(log2x)<f(log43x)的解集;
(3)若f(x)≤m2-2am+1对所有的x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xoy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C1的极坐标方程为pcos(θ-$\frac{π}{3}$)=-1,曲线C2的参数方程为$\left\{\begin{array}{l}{x=1+\sqrt{2}cosα}\\{y=1+\sqrt{2}sinα}\end{array}\right.$,(其中α为参数,α∈[0,2π)),点A,B分别在曲线C1,C2上.
(1)求曲线C1的直角坐标方程和曲线C2的普通方程;
(2)试求两曲线上点A,B距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C的两焦点F1(-1,0)和F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|
(1)求椭圆C的方程;
(2)过F1的直线l与椭圆C相交于A,B两点,若△AF2B的面积为$\frac{12\sqrt{6}}{11}$,求以F2为圆心且与直线l相切的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=3,AB=2,BC=$\sqrt{3}$,求P到BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.(理)若点A(2,-5,-1),B(-1,-4,-2),C(m+3,-3,n)在同一条直线上,则m+n=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知P是△ABC所在平面内一点,$\overrightarrow{PB}$+2$\overrightarrow{PC}$+3$\overrightarrow{PA}$=$\overrightarrow{0}$,现将一粒黄豆随机撒在△ABC内,则黄豆在△PBC内的概率是$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案