精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=Asin(ωx+α)(A>0,ω>0,-$\frac{π}{2}$<α<$\frac{π}{2}$)的最小正周期是π,且当x=$\frac{π}{6}$时,f(x)取得最大值2.
(1)求f(x)的解析式,并作出f(x)在[0,π]上的图象(要列表);
(2)将函数f(x)的图象向右平移m(m>0)个单位长度后得到函数y=g(x)的图象,且y=g(x)是偶函数,求m的最小值.

分析 (1)由函数的最值求出A,由周期求出ω,由特殊点的坐标求出φ的值,用五点法作函数y=Asin(ωx+φ)在一个周期上的图象.
(2)利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的奇偶性,求得m的最小值.

解答 解:(1)因为函数f(x)的最小正周期是π,所以ω=2.
又因为$x=\frac{π}{6}$时,f(x)取得最大值2.所以A=2,
同时$2×\frac{π}{6}+α=2kπ+\frac{π}{2},k∈Z$,$α=2kπ+\frac{π}{6},k∈Z$,∵$-\frac{π}{2}<α<\frac{π}{2}$∴$α=\frac{π}{6}$,
∴函数y=f(x)的解析式$f(x)=2sin(2x+\frac{π}{6})$.
∵x∈[0,π],∴$2x+\frac{π}{6}∈[\frac{π}{6},\frac{13π}{6}]$,列表如下:

$2x+\frac{π}{6}$$\frac{π}{6}$$\frac{π}{2}$π$\frac{3π}{2}$$\frac{13π}{6}$
x0$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$x
f(x)120-201
描点、连线得下图

(2)由已知得y=g(x)=f(x-m)=$2sin[2(x-m)+\frac{π}{6}]=2sin[2x-(2m-\frac{π}{6})]$ 是偶函数,
所以$2m-\frac{π}{6}=\frac{π}{2}(2k+1),k∈Z$,$m=\frac{kπ}{2}+\frac{π}{3},k∈Z$,
又因为m>0,所以m的最小值为$\frac{π}{3}$.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由特殊点的坐标求出φ的值,用五点法作函数y=Asin(ωx+φ)在一个周期上的图象,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.计算机执行如图所示的程序段后,输出的结果是(  )
A.2B.3C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(3,6),λ为实数,若($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,则λ等于(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A(x1,f(x1),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<0)图象上的任意两点,且初相φ的终边经过点P(1,-$\sqrt{3}$),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为$\frac{π}{3}$.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的单调递增区间;
(Ⅲ)当x∈[0,$\frac{π}{6}$]时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.甲、乙、丙三个袋子中分别装有5个小球(这些球除颜色外都相同),甲袋中装有4个红球和1个绿球,乙袋中装有1个白球、3个红球和1个绿球,丙袋中装有2个白球和3个红球.
(Ⅰ)若从甲袋中有放回的抽取3次(每次抽取1个小球),求至少有两次抽到红球的概率;
(II)若从乙、丙两个袋子中各抽取2个小球,用ξ表示抽到的4个小球中白球的个数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.记函数f(x)=$\frac{1}{\sqrt{2x-3}}$的定义域为集合A,函数g(x)=$\frac{k-1}{x}$图象在二、四象限时,k的取值集合为B,函数h(x)=x2+2x+4的值域为集合C.
(1)求集合A,B,C.
(2)求集合A∪(∁RB),A∩(B∪C).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知四棱锥P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F,H分别是BC,PC,PD的中点.
(Ⅰ)证明:AE⊥PD;
(Ⅱ)设平面PAB∩平面PCD=l,求证:FH∥l;
(Ⅲ)设H是棱PD上的动点,若EH与平面PAD所成最大角的正切值为$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.一个几何体的三视图如图所示,则这个几何体的体积为8πcm3..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某几何体的三视图如图所示,若该几何体的体积为64+16π,则实数a等于(  )
A.2B.2$\sqrt{2}$C.4D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案