【题目】已知函数.
(1)当时,判断在上的单调性并加以证明;
(2)若,,求的取值范围.
【答案】(1)在为增函数;证明见解析(2)
【解析】
(1)令,求出,可推得,故在为增函数;
(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.
(1)当时,.
记,则,
当时,,.
所以,所以在单调递增,所以.
因为,所以,所以在为增函数.
(2)由题意,得,记,则,
令,则,
当时,,,所以,
所以在为增函数,即在单调递增,
所以.
①当,,恒成立,所以为增函数,即在单调递增,
又,所以,所以在为增函数,所以
所以满足题意.
②当,,令,,
因为,所以,故在单调递增,
故,即.
故,
又在单调递增,
由零点存在性定理知,存在唯一实数,,
当时,,单调递减,即单调递减,
所以,此时在为减函数,
所以,不合题意,应舍去.
综上所述,的取值范围是.
科目:高中数学 来源: 题型:
【题目】按照下列要求,分别求有多少种不同的方法?
(1)5个不同的小球放入3个不同的盒子;
(2)5个不同的小球放入3个不同的盒子,每个盒子至少一个小球;
(3)5个相同的小球放入3个不同的盒子,每个盒子至少一个小球;
(4)5个不同的小球放入3个不同的盒子,恰有1个空盒.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知椭圆的右焦点为,左、右顶点分别为、,上、下顶点分别为、,连结并延长交椭圆于点,连结,,记椭圆的离心率为.
(1)若,.
①求椭圆的标准方程;
②求和的面积之比.
(2)若直线和直线的斜率之积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)设,求函数的单调增区间;
(2)设,求证:存在唯一的,使得函数的图象在点处的切线l与函数的图象也相切;
(3)求证:对任意给定的正数a,总存在正数x,使得不等式成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设X~N(1,σ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为( )
(附:随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)=68.26%,P(μ-2σ<ξ<μ+2σ)=95.44%)
A. 6038 B. 6587 C. 7028 D. 7539
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个口袋内有个不同的红球,个不同的白球,
(1)从中任取个球,红球的个数不比白球少的取法有多少种?
(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形中,,,其中渠底宽为1米,渠口宽为3米,渠深米.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线方向加宽、方向加深,若扩建后的水渠横截面仍是等腰梯形,且面积是原面积的2倍.设扩建后渠深为米,若挖掘费用为每立方米万元,水渠的内壁(渠底和梯形两腰,端也要重新铺设)铺设混凝土的费用为每平方米万元.
(1)用表示渠底的长度,并求出的取值范围;
(2)问渠深为多少米时,建设费用最低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com