精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,判断上的单调性并加以证明;

2)若,求的取值范围.

【答案】1为增函数;证明见解析(2

【解析】

1)令,求出,可推得,故为增函数;

2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.

1)当时,.

,则

时,.

所以,所以单调递增,所以.

因为,所以,所以为增函数.

2)由题意,得,记,则

,则

时,,所以

所以为增函数,即单调递增,

所以.

①当恒成立,所以为增函数,即单调递增,

,所以,所以为增函数,所以

所以满足题意.

②当,令

因为,所以,故单调递增,

,即.

单调递增,

由零点存在性定理知,存在唯一实数

时,单调递减,即单调递减,

所以,此时为减函数,

所以,不合题意,应舍去.

综上所述,的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】按照下列要求,分别求有多少种不同的方法?

15个不同的小球放入3个不同的盒子;

25个不同的小球放入3个不同的盒子,每个盒子至少一个小球;

35个相同的小球放入3个不同的盒子,每个盒子至少一个小球;

45个不同的小球放入3个不同的盒子,恰有1个空盒.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知椭圆的右焦点为,左、右顶点分别为,上、下顶点分别为,连结并延长交椭圆于点,连结,记椭圆的离心率为.

1)若.

①求椭圆的标准方程;

②求的面积之比.

2)若直线和直线的斜率之积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)设,求函数的单调增区间;

2)设,求证:存在唯一的,使得函数的图象在点处的切线l与函数的图象也相切;

3)求证:对任意给定的正数a,总存在正数x,使得不等式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(为常数),曲线在与轴的交点A处的切线与轴平行.

(1)的值及函数的单调区间;

(2)若存在不相等的实数使成立试比较的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】XN(12),其正态分布密度曲线如图所示,P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为(  )

(附:随机变量ξ服从正态分布N(μσ2),则P(μσξμσ)=68.26%,P(μ-2σξμ+2σ)=95.44%)

A. 6038 B. 6587 C. 7028 D. 7539

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋内有个不同的红球,个不同的白球,

(1)从中任取个球,红球的个数不比白球少的取法有多少种?

(2)若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农场灌溉水渠长为1000米,横截面是等腰梯形,如图,在等腰梯形中,,其中渠底宽为1米,渠口宽为3米,渠深.根据国家对农田建设补贴的政策,该农场计划在原水渠的基础上分别沿射线方向加宽、方向加深,若扩建后的水渠横截面仍是等腰梯形,且面积是原面积的2.设扩建后渠深为米,若挖掘费用为每立方米万元,水渠的内壁(渠底和梯形两腰,端也要重新铺设)铺设混凝土的费用为每平方米万元.

1)用表示渠底的长度,并求出的取值范围;

2)问渠深为多少米时,建设费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:函数上存在唯一的零点;

2)若函数在区间上的最小值为1,求的值.

查看答案和解析>>

同步练习册答案