精英家教网 > 高中数学 > 题目详情
已知集合A={x∈R|m2x2-n=0},当m,n满足什么条件时,集合A是有限集?无限集?空集?
考点:集合的表示法
专题:计算题,集合
分析:m2x2-n=0可化为m2x2=n;从而判断方程的解的个数.
解答: 解:m2x2-n=0可化为m2x2=n;
若m=n=0,即A=R为无限集;
若m≠0,则当n<0时为空集;
若m≠0,n≥0时为有限集.
点评:本题考查了方程的解个数与集合的元素个数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

不用求根公式,求函数f(x)=(x-2)(x-5)-1的零点的个数,并比较零点与3的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的棱形,M为棱PC上的动点,且
PM
PC
=λ(λ∈[0,1]).
(1)求证:△PBC为直角三角形;
(2)试确定λ的值,使得二面角P-AD-M的平面角余弦值为
2
5
5

查看答案和解析>>

科目:高中数学 来源: 题型:

设三条直线l1:x+y-1=0,l2:kx-2y+3=0,l3:x-(k+1)y-5=0,若这三条直线交于一点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

两直线3x+4y-8=0,6x+8y+11=0间的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:


一个多面体的三视图和直观图如图所示,其中D为AA1的中点.
(1)求平面B1DC把多面体ABC-A1B1C1分成两部分的体积之比;
(2)在线段B1C上是否存在一点E,使A1E∥平面BDC,若存在,指出E点的位置,若不存在,请说明理由;
(3)求直线BD与平面B1DC夹角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinx•cosx+cos2x-sin2x-1(x∈R)
(1)求函数y=f(x)的单调递增区间;
(2)若x∈[-
π
6
π
3
],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出函数y=
x3
3x
-1的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的方程x2+mx+m+n=0的两根分别为椭圆和双曲线的离心率.记分别以m,n为横、纵坐标的点A(m,n)表示的平面区域D.若函数y=loga(x+4)(a>1)的图象上存在区域D内的点,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案