精英家教网 > 高中数学 > 题目详情
19.已知ax3=by3=cz3,且$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=1,求证:(ax2+by2+cz2)${\;}^{\frac{1}{3}}$=a${\;}^{\frac{1}{3}}$+b${\;}^{\frac{1}{3}}$+c${\;}^{\frac{1}{3}}$.

分析 设ax3=by3=cz3=t3,则$\root{3}{a}$+$\root{3}{b}$+$\root{3}{c}$=t($\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$)=t,再推导出(ax2+by2+cz2)${\;}^{\frac{1}{3}}$=t.由此能证明(ax2+by2+cz2)${\;}^{\frac{1}{3}}$=a${\;}^{\frac{1}{3}}$+b${\;}^{\frac{1}{3}}$+c${\;}^{\frac{1}{3}}$.

解答 证明:∵ax3=by3=cz3,且$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$=1,
∴设ax3=by3=cz3=t3,∴a=$\frac{{t}^{3}}{{x}^{3}}$,b=$\frac{{t}^{3}}{{y}^{3}}$,c=$\frac{{t}^{3}}{{z}^{3}}$,
∵$\root{3}{a}$+$\root{3}{b}$+$\root{3}{c}$=t($\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$)=t,
(ax2+by2+cz2)${\;}^{\frac{1}{3}}$=$\root{3}{a{x}^{3}×\frac{1}{x}+b{y}^{3}×\frac{1}{y}+c{z}^{3}×\frac{1}{z}}$=t.
∴(ax2+by2+cz2)${\;}^{\frac{1}{3}}$=a${\;}^{\frac{1}{3}}$+b${\;}^{\frac{1}{3}}$+c${\;}^{\frac{1}{3}}$.

点评 本题考查等式的证明,是基础题,解题时要认真审题,注意分数指数幂的性质和运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,已知四边形ABCD为正方形,SA⊥AB,SA⊥AC,AC与BD的交点为O,AB=2$\sqrt{2}$cm,SC=5cm.
(1)求点S到平面ABCD的距离;
(2)求点S到直线BC的距离;
(3)求异面直线SC与AB所成的角的正切值;
(4)求直线SB与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x|x-a|-x(x∈R).
(1)试讨论f(x)的奇偶性;
(2)存在实数a对任意的x∈[0,t],不等式-4≤f(x)≤6恒成立,求实数t的最大值及此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式中的x:
(1)lg(10x)+1=3lgx;
(2)lg$\frac{x}{10}$=-2-2lgx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知p:lg(2x-1)≤0,q:x2-(2a+1)x+a2+a<0,若p是q成立的充分不必要条件,则实数a的取值范围是(  )
A.(-∞,0)∪[$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.[0,$\frac{1}{2}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-4x+3.
(1)求f(x)在区间[t,t+1]上的最小值;
(2)作出函数g(x)=|f(x)|的图象,并根据图象写出其单调递增区间;
(3)若关于x的方程|f(x)|-a=x至少有三个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有下列四组命题:
①P:集合A⊆B,B⊆C,C⊆A,Q:集合A=B=C;
②P:A∩B=A∩C,Q:B=C;
③P:(x-2)(x-3)=0,Q:$\frac{x-2}{x-3}$=0;
④P:抛物线y=ax2+bx+c(a≠0)过原点,Q:c=0
其中P是Q的充要条件的有 (  )
A.①、②B.①、④C.②、③D.②、④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=|2x-2|的单调增区间为[1,+∞),单调减区间为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是偶函数,x≥0时,f(x)=-2x2+4x.画出f(x)在R上的函数图象.

查看答案和解析>>

同步练习册答案