精英家教网 > 高中数学 > 题目详情
设函数f(x)=sin2x-2sin2x+1.
(1)求f(x)的单调递增区间;
(2)设的值.
【答案】分析:(1)先根据公式对函数进行整理,再结合正弦函数的单调性即可得到答案;
(2)直接把条件代入原函数,即可得到sinθ+cosθ=,再平方即可求出结论.
解答:解:(1)(3分)
,得单调增区间为.(6分)
(2)由
平方得.(12分)
点评:本题主要考查正弦函数的单调性的应用以及三角函数中的恒等变换应用.考查计算能力以及公式掌握的熟练程度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖北)设函数f(x)=sin2ωx+2
3
sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(
1
2
,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点(
π
4
,0)
,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌一模)设函数f(x)=sin2(x+
π
4
)-cos2(x+
π
4
)(x∈R),则函数f(x)是(  )

查看答案和解析>>

科目:高中数学 来源:2013年河南省新乡、许昌、平顶山高考数学一模试卷(理科)(解析版) 题型:选择题

设函数f(x)=sin2(x+)-cos2(x+)(x∈R),则函数f(x)是( )
A.最小正周期为π的奇函数
B.最小正周期为π的偶函数
C.最小正周期为的奇函数
D.最小正周期为的偶函数

查看答案和解析>>

科目:高中数学 来源:2012年湖北省高考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=sin2ωx+2sinωx•cosωx-cos2ωx+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈(,1).
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2013年山东省高考数学试卷(文科)(解析版) 题型:解答题

设函数f(x)=-sin2ωx-sinωxcosωx(ω>0),且y=f(x)的图象的一个对称中心到最近的对称轴的距离为
(Ⅰ)求ω的值
(Ⅱ)求f(x)在区间[]上的最大值和最小值.

查看答案和解析>>

同步练习册答案