精英家教网 > 高中数学 > 题目详情

【题目】以直角坐标系的原点为极点,x轴的正半轴为极轴,建立坐标系,两个坐标系取相同的单位长度.已知直线的参数方程为,曲线的极坐标方程为

(1)求曲线的直角坐标方程

(2)设直线与曲线相交于两点,时,求的值.

【答案】(1)y2=4x;(2)45°或135°.

【解析】

1)由曲线C的极坐标方程为ρsin2θ4cosθ,两边同乘ρ结合即可;

2)由直线的参数方程观察得直线过定点(1,0),用点斜式设直线方程联立曲线C方程,用弦长公式求出弦长,列方程求出直线斜率,然后解出.

1)∵曲线C的极坐标方程为ρsin2θ4cosθ

ρ2sin2θ4ρcosθ

ρsinθyρcosθx

∴曲线C的直角坐标方程为y24x

2)∵直线l的参数方程为参数,0aπ),

tanα,直线过(10),

l的方程为ykx1),

代入曲线Cy24x,消去y

k2x2﹣(2k2+4x+k20

Ax1y1),Bx2y2),

x1x21

|AB|8

8

解得k±1

k1时,α45°

k=﹣1时,α135°

α的值为45°135°

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数,已知它们在处的切线互相平行.

(1)求的值;

(2)若函数,且方程有且仅有四个解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,底面边长为2,的中点,三棱柱的体积.

(1)求三棱柱的表面积;

(2)求异面直线所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图, 平面,四边形为等腰梯形, .

(1)求证:平面平面

(2)已知中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恰有3个零点,则实数的取值范围为( )

A. B. C. D.

【答案】A

【解析】,上单调递减.,上递增,那么零点个数至多有一个,不符合题意,.故需,,使得第一段有一个零点,.对于第二段, ,故需在区间有两个零点, ,上递增,上递减,所以,解得.综上所述,

点睛本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.

型】单选题
束】
13

【题目】 满足约束条件,则的最大值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且).

(Ⅰ)求函数的单调区间;

(Ⅱ)求函数上的最大值.

【答案】(Ⅰ)的单调增区间为,单调减区间为.(Ⅱ)当时, ;当时, .

【解析】试题分析】(I)利用的二阶导数来研究求得函数的单调区间.(II) 由(Ⅰ)得上单调递减,在上单调递增,由此可知.利用导数和对分类讨论求得函数在不同取值时的最大值.

试题解析】

(Ⅰ)

,则.

,∴上单调递增,

从而得上单调递增,又∵

∴当时, ,当时,

因此, 的单调增区间为,单调减区间为.

(Ⅱ)由(Ⅰ)得上单调递减,在上单调递增,

由此可知.

.

.

∵当时, ,∴上单调递增.

又∵,∴当时, ;当时, .

①当时, ,即,这时,

②当时, ,即,这时, .

综上, 上的最大值为:当时,

时, .

[点睛]本小题主要考查函数的单调性,考查利用导数求最大值. 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图象与轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.

型】解答
束】
22

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,圆的普通方程为. 在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为 .

(Ⅰ) 写出圆 的参数方程和直线的直角坐标方程;

( Ⅱ ) 设直线轴和轴的交点分别为为圆上的任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某省从121日至224日的新冠肺炎每日新增确诊病例变化曲线图.

若该省从121日至224日的新冠肺炎每日新增确诊人数按日期顺序排列构成数列的前n项和为,则下列说法中正确的是(

A.数列是递增数列B.数列是递增数列

C.数列的最大项是D.数列的最大项是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)ln(x1) (aR)

(1)a1时,求函数f(x)在点(0f(0))处的切线方程;

(2)讨论函数f(x)的极值;

(3)求证:ln(n1)> (nN*)

查看答案和解析>>

同步练习册答案