精英家教网 > 高中数学 > 题目详情
(2013•牡丹江一模)如图所示的韦恩图中,A、B是非空集合,定义A*B表示阴影部分集合.若x,y∈R,A={x|y=
2x-x2
 }
,B={y|y=3x,x>0},则A*B=(  )
分析:先分别求出集合A和集合B,然后根据A*B表示阴影部分的集合得到A*B={x|x∈A或x∈B且x∉A∩B},最后根据新定义进行求解即可.
解答:解:A={x|y=
2x-x2
}=[0,2]
B={y|y=3x,x>0}=[1,+∞)
根据A*B表示阴影部分的集合可知
A*B={x|x∈A或x∈B且x∉A∩B}
∴A*B={x|0≤x≤1或x>2}
故选C.
点评:本题主要考查了Venn图表达集合的关系及运算,同时考查了识图能力以及转化的能力,属于新颖题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•牡丹江一模)在球O内任取一点P,使得P点在球O的内接正方体中的概率是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)复数 (1+i)z=i( i为虚数单位),则
.
z
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=
1+1nx
x

(1)若函数f(x)在区间(a,a+
1
3
)(a>0)
上存在极值点,求实数a的取值范围;
(2)知果当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围;
(3)求证:[(n+1)!]2>(n+1)en-2+
2
n+1
,这里n∈N*,(n+1)!=1×2×3×…×(n+1),e为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知函数f(x)=xlnx.
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程;
(Ⅲ)设函数g(x)=f(x)-a(x-1),其中a∈R,求函数g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•牡丹江一模)已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD的四个侧面中面积最大的是(  )

查看答案和解析>>

同步练习册答案