精英家教网 > 高中数学 > 题目详情

定义域为D的函数f(x)同时满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[ka,kb](k∈N+),那么我们把f(x)叫做[a,b]上的“k级矩阵”函数,函数f(x)=x3是[a,b]上的“1级矩阵”函数,则满足条件的常数对(a,b)共有


  1. A.
    1对
  2. B.
    2对
  3. C.
    3对
  4. D.
    4对
C
分析:函数f(x)=x3是[a,b]上的“1级矩阵”函数,即满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[a,b],利用函数f(x)=x3是[a,b]上的单调增函数,即可求得满足条件的常数对.
解答:由题意,函数f(x)=x3是[a,b]上的“1级矩阵”函数,即满足条件①常数a,b满足a<b,区间[a,b]⊆D,②使f(x)在[a,b]上的值域为[a,b]
∵函数f(x)=x3是[a,b]上的单调增函数
,∴满足条件的常数对(a,b)为(-1,0),(-1,1),(0,1)
故选C
点评:本题考查了新定义型函数的理解和运用能力,函数单调性的应用,转化化归的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为D的函数f(x),对任意x∈D,存在正数K,都有|f(x)|≤K成立,则称函数f(x)是D上的“有界函数”.已知下列函数:①f(x)=2sin x;②f(x)=
1-x2
;③f(x)=1-2x;④f(x)=
x
x2+1
,其中是“有界函数”的是
 
.(写出所有满足要求的函数的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为D的函数f(x),如果对任意x∈D,存在正数K,都有|f(x)|≤K|x|成立,那么称函数f(x)是D上的“倍约束函数”,已知下列函数:①f(x)=2x;②f(x)=2sin(x+
π
4
)
;③f(x)=
x-1
;④f(x)=
x
x2-x+1
,其中是“倍约束函数的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泉州模拟)定义域为D的函数f(x),其导函数为f′(x).若对?x∈D,均有f(x)<f′(x),则称函数f(x)为D上的梦想函数.
(Ⅰ)已知函数f(x)=sinx,试判断f(x)是否为其定义域上的梦想函数,并说明理由;
(Ⅱ)已知函数g(x)=ax+a-1(a∈R,x∈(0,π))为其定义域上的梦想函数,求a的取值范围;
(Ⅲ)已知函数h(x)=sinx+ax+a-1(a∈R,x∈[0,π])为其定义域上的梦想函数,求a的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)定义域为D的函数f(x),如果对于区间I内(I⊆D)的任意两个数x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,则称此函数在区间I上是“凸函数”.
(1)判断函数f(x)=lgx在R+上是否是“凸函数”,并证明你的结论;
(2)如果函数f(x)=x2+
a
x
1,2
上是“凸函数”,求实数a的取值范围;
(3)对于区间
c,d
上的“凸函数”f(x),在
c,d
上任取x1,x2,x3,…,xn
①证明:当n=2k(k∈N*)时,f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
成立;
②请再选一个与①不同的且大于1的整数n,
证明:f(
x1+x2+…+xn
n
)≥
1
n
[f(x1)+f(x2)+…+f(xn)]
也成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)定义域为D的函数f(x),如果对于区间I内(I⊆D)的任意两个数x1、x2都有f(
x1+x2
2
)≥
1
2
[f(x1)+f(x2)]
成立,则称此函数在区间I上是“凸函数”.
(1)判断函数f(x)=-x2在R上是否是“凸函数”,并证明你的结论;
(2)如果函数f(x)=x2+
a
x
在区间[1,2]上是“凸函数”,求实数a的取值范围;
(3)对于区间[c,d]上的“凸函数”f(x),在[c,d]上的任取x1,x2,x3,…,x2n,证明:f(
x1+x2+…+x2n
2n
)≥
1
2n
[f(x1)+f(x2)+…+f(x2n)]

查看答案和解析>>

同步练习册答案