精英家教网 > 高中数学 > 题目详情

【题目】考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=(
A.4
B.5
C.6
D.7

【答案】B
【解析】解:当a=4时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=5,i=2; 当a=5时,不满足退出循环的条件,进入循环后,由于a值满足“a是奇数”,故a=16,i=3;
当a=16时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=8,i=4;
当a=8时,不满足退出循环的条件,进入循环后,由于a值不满足“a是奇数”,故a=4,i=5;
当a=4时,满足退出循环的条件,故输出结果为:5
故选B.
由已知中的程序框图可知:该程序的功能是利用条件结构和循环结构的嵌套计算并输出i值,模拟程序的运行过程可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=aln(x2+1)+bx存在两个极值点x1 , x2
(1)求证:|x1+x2|>2;
(2)若实数λ满足等式f(x1)+f(x2)+a+λb=0,试求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆轴,轴的正半轴分别交于A,B两点,原点O到直线AB的距离为该椭圆的离心率为

(1)求椭圆的方程

(2)是否存在过点P(的直线与椭圆交于M,N两个不同的点,使成立?若存在,求出的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天.

(Ⅰ)求此人到达当日空气质量优良的概率

(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率

(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+bx﹣c,f(x)在点(1,f(1))处的切线方程为x+y+4=0.
(1)求f(x)的解析式;
(2)求f(x)的单调区间;
(3)若在区间 内,恒有f(x)≥2lnx+kx成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,A1 , B1分别是边BA,CB的中点,A2 , B2分别是线段A1A,B1B的中点,…,An , Bn分别是线段 的中点,设数列{an},{bn}满足:向量 ,有下列四个命题,其中假命题是(
A.数列{an}是单调递增数列,数列{bn}是单调递减数列
B.数列{an+bn}是等比数列
C.数列 有最小值,无最大值
D.若△ABC中,C=90°,CA=CB,则 最小时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}.满足:an+1>an(n∈N*),a1=1,该数列的前三项分别加上1,1,3后成等比数列,an+2log2bn=﹣1.
(Ⅰ)分别求数列{an},{bn}的通项公式;
(Ⅱ)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,且与圆外切于点x轴上的一个动点.

求圆C的标准方程;

当圆C上存在点Q,使,求实数m的取值范围;

时,过P作直线PAPB与圆C分别交于异于点P的点AB两点,且求证:直线AB恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的图象可能是(

A.(1)(3)
B.(1)(2)(4)
C.(2)(3)(4)
D.(1)(2)(3)(4)

查看答案和解析>>

同步练习册答案