精英家教网 > 高中数学 > 题目详情
19.设△ABC的三边长分别为a,b,c,面积为S,内切圆半径为r,则S=$\frac{1}{2}$(a+b+c)r,类比这个结论知:四面体S-ABC的四个面的面分别为S1,S2,S3,S4,体积为V,内切球半径为R,则V=$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

分析 根据平面与空间之间的类比推理,由点类比点或直线,由直线类比直线或平面,由内切圆类比内切球,由平面图形面积类比立体图形的体积,结合求三角形的面积的方法类比求四面体的体积即可

解答 解:设四面体的内切球的球心为O,
则球心O到四个面的距离都是R,
所以四面体的体积等于以O为顶点,
分别以四个面为底面的4个三棱锥体积的和.
则四面体的体积为$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.
故答案为:$\frac{1}{3}({S_1}+{S_2}+{S_3}+{S_4})R$.

点评 类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)(x∈R)满足f(2)=4,且f(x)的导函数f′(x)>3,则f(x)<3x-2的解集为(  )
A.(-2,2)B.(-∞,2)C.(-∞,-2)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.数列{an}的通项an=n(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n项和为Sn,则S30为(  )
A.15B.20C.25D.39

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和为Sn,且满足a1=1,2an+1=2an+p(p为常数,n∈N*).
(Ⅰ)若S3=6,求Sn
(Ⅱ)若数列{an}是等比数列,求实数p的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若$f(n)=\frac{1}{2n+1}+\frac{1}{2n+2}+…+\frac{1}{3n}(n∈{N^*})$,则当n≥3时,f(n+1)-f(n)=$\frac{1}{3n+1}+\frac{1}{3n+2}+\frac{1}{3n+3}-\frac{1}{2n+1}-\frac{1}{2n+2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a、b是两条直线,α、β是两个平面,则下列命题中错误的是(  )
A.若a⊥α,a⊥β,则α∥βB.若a⊥α,b⊥α,则a∥bC.若a?α,b⊥α,则a⊥bD.若a⊥α,α⊥β,则a∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若空间向量$\overrightarrow{a}$=(1,-1,0),$\overrightarrow{b}$=(-1,2,1),$\overrightarrow{c}$=(2,1,m)共面,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.曲线y=lnx-2x在点(1,-2)处的切线与坐标轴所围成的三角形的面积是(  )
A.$\frac{1}{2}$B.$\frac{3}{4}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)若以连续抛两次骰子分别得到的点数m,n分别作为点P的横坐标和纵坐标,求点P落在圆x2+y2=16内的概率;
(2)已知函数f(x)=ax2+bx-1,a,b∈[0,4],求f(1)>0且f(-1)<0成立的概率.

查看答案和解析>>

同步练习册答案