精英家教网 > 高中数学 > 题目详情

【题目】函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m>0,n>0,则 + 的最小值为(
A.3+2
B.3+2
C.7
D.11

【答案】A
【解析】解:函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A(﹣1,﹣1),

∵点A在直线mx+ny+1=0上,其中m>0,n>0,∴﹣m﹣n+1=0,即m+n=1.

+ =(m+n) =3+ + ≥3+2 =3+2 ,当且仅当n= m=2﹣ 时取等号.

故选:A.

函数y=loga(x+2)﹣1(a>0,a≠1)的图象恒过定点A(﹣1,﹣1),可得m+n=1.于是 + =(m+n) =3+ + ,再利用基本不等式的性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,又a1 , a2 , a5成公比不为1的等比数列. (Ⅰ)求数列{an}的公差;
(Ⅱ)设bn= ,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求证:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点. (Ⅰ)证明:AC⊥D1E;
(Ⅱ)求DE与平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为正数的等差数列,a1a2=3,a2a3=15.
(1)求数列{an}的通项公式;
(2)设bn=(an+1)2 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某营养学家建议:高中生每天的蛋白质摄入量控制在[60,90](单位:克),脂肪的摄入量控制在[18,27](单位:克).某学校食堂提供的伙食以食物A和食物B为主,1千克食物A含蛋白质60克,含脂肪9克,售价20元;1千克食物B含蛋白质30克,含脂肪27克,售价15元. (Ⅰ)如果某学生只吃食物A,判断他的伙食是否符合营养学家的建议,并说明理由;
(Ⅱ)为了花费最低且符合营养学家的建议,学生需要每天同时食用食物A和食物B各多少千克?并求出最低需要花费的钱数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若α,β∈(0, ),sin( )=﹣ ,cos( )= ,则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的图象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案