精英家教网 > 高中数学 > 题目详情

函数y=2cos2x+1(x∈R)的最小正周期为


  1. A.
    数学公式
  2. B.
    π
  3. C.
  4. D.
A
分析:把函数y=2cos2x+1(x∈R)化为一个角的一个三角函数的形式,求出周期即可.
解答:函数y=2cos2x+1=cos2x+2
它的最小正周期为:=π,
故选B
点评:本题考查三角函数的周期性及其求法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网函数y=2cos2x+sin2x的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=f(x)cosx的图象向左移
π
4
个单位后,再作关于x轴的对称变换得到的函数y=2cos2x-1的图象,则f(x)可以是(  )
A、-2cosx
B、2cosx
C、-2sinx
D、2sinx

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的函数y=2cos2x-2acosx-(2a+1)的最小值为f(a),试确定满足f(a)=
12
的a的值,并对此时的a值求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=2cos2x-1是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2cos2x-2acosx-(2a+1)
(1)求函数的最小值f(a)
(2)试确定满足f(a)=
12
的a的值
(3)当a取(2)中的值时,求y的最大值.

查看答案和解析>>

同步练习册答案